Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microsc Res Tech ; 87(5): 1009-1019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192121

RESUMO

The structure of photoreceptors (PR) and the arrangement of neurons in the retina of red-tail shark were investigated using light and electron microscopy. The PR showed a mosaic arrangement and included double cones, single cones (SC), and single rods. Most cones occur as SC. The ratio between the number of cones and rods was 3:1.39 (±0.29). The rods were tall that reached the pigmented epithelium. The outer plexiform layer (OPL) showed a complex synaptic connection between the horizontal and photoreceptor terminals that were surrounded by Müller cell processes. Electron microscopy showed that the OPL possessed both cone pedicles and rod spherules. Each rod spherule consisted of a single synaptic ribbon within the invaginating terminal endings of the horizontal cell (hc) processes. In contrast, the cone pedicles possessed many synaptic ribbons within their junctional complexes. The inner nuclear layer consisted of bipolar, amacrine, Müller cells, and hc. Müller cells possessed intermediate filaments and cell processes that can reach the outer limiting membrane and form connections with each other by desmosomes. The ganglion cells were large multipolar cells with a spherical nucleus and Nissl' bodies in their cytoplasm. The presence of different types of cones arranged in a mosaic pattern in the retina of this species favors the spatial resolution of visual objects. RESEARCH HIGHLIGHTS: This is the first study demonstrating the structure and arrangement of retinal neurons of red-tail shark using light and electron microscopy. The current study showed the presence of different types of cones arranged in a mosaic pattern that may favor the spatial resolution of visual objects in this species. The bipolar, amacrine, Müller, and horizontal cells could be demonstrated.


Assuntos
Elétrons , Perciformes , Animais , Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/ultraestrutura
2.
Sci Rep ; 13(1): 8665, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248336

RESUMO

The pseudobranch is a gill-like structure that exhibits great variations in structure and function among fish species, and therefore, it has remained a topic of investigation for a long time. This study was conducted on adult Molly fish (Poecilia sphenops) to investigate the potential functions of their pseudobranch using histological, histochemical, immunohistochemical analysis, and scanning electron microscopy. The pseudobranch of Molly fish was of embedded type. It comprised many rows of parallel lamellae that were fused completely throughout their length by a thin connective tissue. These lamellae consisted of a central blood capillary, surrounded by large secretory pseudobranch cells (PSCs). Immunohistochemical analysis revealed the expression of PSCs for CD3, CD45, iNOS-2, and NF-κB, confirming their role in immunity. Furthermore, T-lymphocytes-positive CD3, leucocytes-positive CD45, and dendritic cells-positive CD-8 and macrophage- positive APG-5 could be distinguished. Moreover, myogenin and TGF-ß-positive PSCs were identified, in addition to nests of stem cells- positive SOX-9 were detected. Melanocytes, telocytes, and GFAP-positive astrocytes were also demonstrated. Scanning electron microscopy revealed that the PSCs were covered by microridges, which may increase the surface area for ionic exchange. In conclusion, pseudobranch is a highly specialized structure that may be involved in immune response, ion transport, acid-base balance, as well as cell proliferation and regeneration.


Assuntos
Poecilia , Animais , Brânquias/metabolismo , Microscopia Eletrônica de Varredura , Fator de Crescimento Transformador beta/metabolismo , Regeneração
3.
J Morphol ; 284(5): e21584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976835

RESUMO

This work reports on the structural characteristics of the respiratory gas bladder of the osteoglossiform fish Heterotis niloticus. The bladder-vertebrae relationships are also analyzed. A slit-shaped orifice in the mediodorsal pharyngeal wall is surrounded by a muscle sphincter and serves as a glottis-like opening to the gas bladder. The dorsolateral internal surface of the gas bladder is lined by a parenchyma of highly vascularized trabeculae and septa displaying an alveolar-like structure. The trabeculae contain, in addition to vessels, numerous eosinophils probably involved in immune responses. The air spaces are endowed with a thin exchange barrier indicating a good potential for respiratory gas exchange. The ventral wall of the gas bladder is a well-vascularized membrane that exhibits an exchange barrier in the luminal face and an inner structure dominated by the presence of a layer of richly innervated smooth muscle. This is suggestive of an autonomous adjustability of the gas bladder ventral wall. The trunk vertebrae show large transverse processes (parapophyses) and numerous surface openings that lead into intravertebral spaces that become invaded by the bladder parenchyma. Curiously, the caudal vertebrae show a regular teleost morphology with neural and hemal arches, but have similar surface openings and intravertebral pneumatic spaces. The African Arowana hence rivals the freshwater butterfly fish Pantodon in its exceptional role of displaying postcranial skeletal pneumaticity outside of Archosauria. The possible significance of these findings is discussed.


Assuntos
Coluna Vertebral , Bexiga Urinária , Animais , Coluna Vertebral/anatomia & histologia , Peixes/anatomia & histologia , Osso Esponjoso , Faringe
4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768639

RESUMO

Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Imuno-Histoquímica , Peixes , Tecido Linfoide , Mamíferos
5.
Acta Histochem ; 124(7): 151954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36174310

RESUMO

We have conducted a morphological and immunohistochemical study of the gills of juvenile specimens of the obligate air-breathing fish Heterotis niloticus. The study has been performed under normoxic and hypoxic conditions. The gills showed a reduced respiratory surface area by development of an interlamellar cellular mass (ILCM). The ILCM persisted without changes under both normoxia and hypoxia. Neuroepithelial cells (NECs), the major oxygen and hypoxia sensing cell type, were located in the distal end of the gill filaments and along the ILCM edges. These cells expressed 5HT, the neuronal isoform of the nitric oxide synthase (nNOS) and the vesicular acetylcholine transporter (VAChT). Furthermore, NECs appeared associated with nitrergic nerve fibres. The O2 levels did not modify the location, number or the immunohistochemical characteristics of NECs. Pavement cells covering the ILCM were also positive to nNOS and VAChT. The mechanisms of O2 sensing in the gills of Heterotis appears to involve several cell populations, the release of multiple neurotransmitters and a diversity of excitatory, inhibitory and modulatory mechanisms.


Assuntos
Peixes , Brânquias , Animais , Biomarcadores , Peixes/metabolismo , Brânquias/fisiologia , Hipóxia , Óxido Nítrico Sintase/metabolismo , Oxigênio/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina
6.
Cells ; 11(17)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36078068

RESUMO

This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their processes extended through the tectal laminae and ended at the surface of the tectum as a subpial end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 µm2) and columnar ciliated (EC3.22 ± 0.71/100 µm2). Immunohistochemical analysis revealed two types of GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1ß, APG5, and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplasmic processes. The proliferative activity of the neighboring stem cells was also distinct. The most interesting finding in this study was the glia-neuron interaction, where the processes of ECs met the progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles of intermediate filaments in their processes and basal poles and were connected by desmosomes, followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to the presence of bundles of generating axons in direct contact with these stem cells. The present study indicates the role of ECs in neurogenesis.


Assuntos
Células-Tronco Neurais , Poecilia , Animais , Encéfalo , Epêndima , Neuroglia
7.
Animals (Basel) ; 12(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35739901

RESUMO

A morphological study of the alimentary tract, from the oropharyngeal cavity to the rectum, including the attached glands, of African bony-tongue, Heterotis niloticus (Cuvier, 1829) was carried out by gross anatomy, and light microscope analysis. This study aimed to give a deeper knowledge of the alimentary tract morphological features of this species of commercial interest. H. niloticus is distinguished by individual morphological characteristics showing a digestive tract similar to that of reptiles and birds. Within the oropharyngeal cavity, two tubular structures with digitiform ends are arranged on both lateral sides of the triangular tongue. The oropharyngeal cavity connects the stomach by a short esophagus. This latter is adapted to mechanical trituration, and it is divided into a pars glandularis and a thick-walled pars muscularis. The gizzard flows into the anterior intestine and two blind pyloric appendages, which exhibit specific functions, including immune defense for the presence of secondary lymphoid organs. The anterior intestine continues with the middle and posterior tracts up into the rectum. According to the histological observations, all regions of the alimentary tract have common structural features, typical of hollow organs, with differences in the mucosa structure that reflects the different functions of the apparatus, from mouth to anus. Within this study, we provided the first basis for future studies on optimizing rearing conditions, feed conversion ratio, and the digestive capacity, improving the growth performance of this species, and ensuring its conservation.

8.
Biology (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35625510

RESUMO

In fish, the spleen is the prime secondary lymphoid organ. It has a role in the induction of adaptive immune responses, in addition to its significance in the elimination of immune complexes. This study was conducted on 18 randomly obtained adult molly fish (Poecilia sphenops) of both sexes using histological, immunohistochemical, and ultrastructural studies to highlight the cellular components of the spleen and their potential role in the immune system. The spleen of molly fish was characterized by the presence of well-distinct melanomacrophage centers, and other basic structures present in higher vertebrates including red and white pulps, blood vessels, and ellipsoids. Some mitotic cells could also be identified in the red pulp. Mast cells with characteristic metachromatic granules could be seen among the splenic cells. Rodlet cells were randomly distributed in the spleen and were also observed around the ellipsoids. The white pulp of the spleen expressed APG5. The expressions were well distinct in the melanomacrophages, leukocytes, and macrophages. Myostatin was expressed in leukocytes and epithelial reticular cells. IL-1ß showed immunoreactivity in monocytes and macrophages around the ellipsoids. NF-κB and TGF-ß were expressed in macrophages and epithelial reticular cells. Nrf2 expression was detected in stem cells and rodlet cells. Sox-9 had a higher expression in epithelial reticular cells and stem cells. The high frequency of immune cells in the spleen confirmed its role in the regulation of both innate and adaptive immunity, cell proliferation, and apoptosis.

9.
Mar Drugs ; 20(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35200674

RESUMO

Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Peixes/metabolismo , Neuropeptídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Aquicultura , Proteínas de Peixes/imunologia , Peixes , Brânquias/metabolismo , Humanos , Imunidade Inata/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo
10.
Anat Rec (Hoboken) ; 305(11): 3212-3229, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142056

RESUMO

Acetylcholine (Ach) represents the old neurotransmitter in central and peripheral nervous system. Its muscarinic and nicotinic receptors (mAChRs and nAChRs) constitute an independent cholinergic system that is found in immune cells and play a key role in the regulation of the immune function and cytokine production. Gas exchanging surfaces of the gills and air-breathing organs (ABOs) of the sharptooth catfish Clarias gariepinus were investigated using ultrastructural and confocal immunofluorescence techniques. This study was predominantly focused on the structure of the immune cell types, the expression of their neurotransmitters, including the antimicrobial peptide piscidin 1, and the functional significance of respiratory gas exchange epithelia. A network of immune cells (monocytes, eosinophils, and mast cells) was observed in the gill and the ABO epithelia. Eosinophils containing 5-hydroxytryptamine (5-HT) immunoreactivity were seen in close association with mast cells expressing acetylcholine (Ach), 5-HT, neuronal nitric oxide synthase, and piscidin 1. A rich and dense cholinergic innervation dispersing across the islet capillaries of the gas exchange barrier and the localization of Ach in the squamous pavement cells covering the capillaries were evidenced byVAChT antibodies. We report for the first time that piscidin 1 (Pis 1)-positive mast cells interact with Pis 1-positive nerves found in the epithelia of the respiratory organs. Pis 1 immunoreactivity was also observed in the covering respiratory epithelium of the ABOs and associated with a role in local mucosal immune defense. The above results anticipate future studies on the neuro-immune interactions at mucosal barrier surfaces, like the gill and the skin of fish, areas densely populated by different immune cells and sensory nerves that constantly sense and adapt to tissue-specific environmental challenges.


Assuntos
Peixes-Gato , Receptores Nicotínicos , Acetilcolina/metabolismo , Animais , Peixes-Gato/metabolismo , Colinérgicos/metabolismo , Citocinas/metabolismo , Neurotransmissores/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores Nicotínicos/metabolismo , Serotonina/metabolismo
11.
Zoology (Jena) ; 148: 125958, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34399394

RESUMO

Heteropneustes fossilis is an air-breathing teleost inhabiting environments with very poor O2 conditions, and so it has evolved to cope with hypoxia. In the gills and respiratory air-sac, the sites for O2 sensing and the response to hypoxia rely on the expression of acetylcholine (Ach) acting via its nicotinic receptor (nAChR). This study examined the expression patterns of neuronal markers and some compounds in the NECs of the gills and respiratory air sac having an immunomodulatory function in mammalian lungs. Mucous cells, epithelial cells and neuroepithelial cells (NECs) were immunopositive to a variety of both neuronal markers (VAChT, nAChR, GABA-B-R1 receptor, GAD679) and the antimicrobial peptide piscidin, an evolutionary conserved humoral component of the mucosal immune system in fish. We speculate that Ach release via nAChR from mucous cells may be modulated by GABA production in the NECs and it is required for the induction of mucus production in both normoxic and hypoxic conditions. The presence of piscidin in mucous cells may act in synergy with the autocrine/paracrine signals of Ach and GABA binding to GABA B R1B receptor that may play a local immunomodulatory function in the mucous epithelia of the gills and the respiratory air sac. The potential role of the NECs in the immunobiological behaviour of the gill/air-sac is at moment a matter of speculation. The extent to which the NECs as such may participate is elusive at this stage and waits investigation.


Assuntos
Peixes-Gato/fisiologia , Brânquias/citologia , Muco/metabolismo , Células Neuroepiteliais/metabolismo , Neurotransmissores/metabolismo , Receptores de Neurotransmissores/metabolismo , Sacos Aéreos/citologia , Animais , Peixes-Gato/imunologia , Imunidade Celular , Receptores de Neurotransmissores/genética
12.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299159

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are proteins that contain highly conserved functional domains and sequence motifs that are correlated with their unique biophysical activities, to regulate cardiac pacemaker activity and synaptic transmission. These pacemaker proteins have been studied in mammalian species, but little is known now about their heart distribution in lower vertebrates and c-AMP modulation. Here, we characterized the pacemaker system in the heart of the wild Atlantic cod (Gadus morhua), with respect to primary pacemaker molecular markers. Special focus is given to the structural, ultrastructural and molecular characterization of the pacemaker domain, through the expression of HCN channel genes and the immunohistochemistry of HCN isoforms, including the location of intracardiac neurons that are adjacent to the sinoatrial region of the heart. Similarly to zebrafish and mammals, these neurons are immunoreactive to ChAT, VAChT and nNOS. It has been shown that cardiac pacemaking can be modulated by sympathetic and parasympathetic pathways, and the existence of intracardiac neurons projecting back to the central nervous system provide a plausible link between them.


Assuntos
Gadus morhua/metabolismo , Coração/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Gadus morhua/genética , Gadus morhua/crescimento & desenvolvimento , Coração/inervação , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Miócitos Cardíacos/citologia , Isoformas de Proteínas , Transmissão Sináptica
13.
Fish Shellfish Immunol ; 111: 189-200, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588082

RESUMO

Acetylcholine (Ach) is the main neurotransmitter in the neuronal cholinergic system and also works as a signaling molecule in non-neuronal cells and tissues. The diversity of signaling pathways mediated by Ach provides a basis for understanding the biology of the cholinergic epithelial cells and immune cells in the gill of the species studied. NECs in the gill were not found surprisingly, but specialized cells showing the morphological, histochemical and ultrastructural characteristics of eosinophils were located in the gill filaments and respiratory lamellae. Much remains unknown about the interaction between the nerves and eosinophils that modulate both the release of acetylcholine and its nicotinic and muscarinic receptors including the role of acetylcholine in the mechanisms of O2 chemosensing. In this study we report for the first time the expression of Ach in the pavement cells of the gill lamellae in fish, the mast cells associated with eosinophils and nerve interaction for both immune cell types, in the gill of the extant butterfly fish Pantodon buchholzi. Multiple roles have been hypothesized for Ach and alpha nAChR in the gills. Among these there are the possible involvement of the pavement cells of the gill lamellae as O2 chemosensitive cells, the interaction of Ach positive mast cells with eosinophils and interaction of eosinophils with nerve terminals. This could be related to the use of the vesicular acetylcholine transporter (VAChT) and the alpha 2 subunit of the acetylcholine nicotinic receptor (alpha 2 nAChR). These data demonstrate the presence of Ach multiple sites of neuronal and non-neuronal release and reception within the gill and its ancestral signaling that arose during the evolutionary history of this conservative fish species.


Assuntos
Acetilcolina/metabolismo , Peixes/imunologia , Sistema Imunitário/metabolismo , Oxigênio/metabolismo , Animais , Feminino , Peixes/classificação , Brânquias , Masculino , Oxigênio/imunologia , Filogenia
14.
J Morphol ; 281(12): 1588-1597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33034403

RESUMO

We report here on the histological and structural characteristics of the gas bladder, the vertebral morphology, and the bladder-vertebra relationships of the butterfly fish, Pantodon buchholzi. The bladder opens at the boundary between the pharynx and the esophagus by a middle slit. A pneumatic duct is absent. The bladder shows a dorsolateral wall that adapts to the anfractuosities of the coelomic cavity and a ventral wall in contact with the abdominal organs. The vertebral bodies are formed by an hourglass shaped autocentrum, and by an arcocentrum reduced to several longitudinal ridges. The transverse processes adopt the structure of a cage whose walls are formed by bone trabeculae of variable size and distribution pattern. The dorsolateral wall of the bladder is a membrane that covers the kidney, adapts to the irregular shape of the vertebrae, and invades the transverse processes at several points before extending laterally. However, invasion of the vertebral bodies, the presence of a labyrinth, or the formation of respiratory parenchyma were not observed. The luminal surface of this wall is a thin respiratory barrier containing a single epithelial cell type. In addition, the wall contains numerous eosinophils that may be implicated in immune defense. The bladder ventral wall is a membrane rich in collagen, vessels, smooth muscle, and nerves that lacks a respiratory barrier. Its luminal surface contains ciliated and nonciliated cells. The two cell types appear implicated in surfactant production.


Assuntos
Peixes/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Bexiga Urinária/anatomia & histologia , Adaptação Fisiológica , Animais , Coluna Vertebral/ultraestrutura , Bexiga Urinária/ultraestrutura
15.
Zoology (Jena) ; 139: 125755, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32088527

RESUMO

The air-breathing specialization has evolved idependently in vertebrates, as many different organs can perfom gas exchange. The largest obligate air-breathing fish from South America Arapaima gigas breathe air using its gas bladder, and its dependence on air breathing increases during its growth. During its development, gill morphology shows a dramatic change, remodeling with a gradual reduction of gill lamellae during the transition from water breathing to air breathing . It has been suggested that in this species the gills remain the main site of O2 and CO2 sensing. Consistent with this, we demonstrate for the first time the occurrence of the neuroepithelial cells (NECs) in the glottis, and in the gill filament epithelia and their distal halves. These cells contain a broader spectrum of neurotransmitters (5-HT, acetylcholine, nNOS), G-protein subunits and the muscarininic receptors that are coupled to G proteins (G-protein coupled receptors). We report also for the first time the presence of G alpha proteins coupled with muscarinic receptors on the NECs, that are thought as receptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Based on the specific orientation in the epithelia and their closest vicinity to efferent vasculatures, the gill and glottal NECs of A. gigas could be regarded as potential O2 and CO2 sensing receptors. However, future studies are needed to ascertain the neurophysiological characterization of these cells.


Assuntos
Peixes/fisiologia , Regulação da Expressão Gênica/fisiologia , Células Neuroepiteliais/fisiologia , Receptores Muscarínicos/metabolismo , Ar , Animais , Anticorpos , Especificidade de Anticorpos , Peixes/genética , Brânquias/fisiologia , Receptores Muscarínicos/genética
16.
Acta Histochem ; 120(7): 630-641, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30266194

RESUMO

In fishes, exploitation of aerial gas exchange has evolved independently many times, involving a variety of air-breathing organs. Indeed, air-breathing occurs in at least 49 known families of fish (Graham, 1997). Many amphibious vertebrates, at some stage of their development are actually trimodal breathers that use various combinations of respiratory surfaces to breath both water (skin and/or gill) and air (skin and/or lung). The present review examines the evolutionary implications of air-breathing organs in fishes and the morphology of the peripheral receptors and the neurotransmitter content of the cells involved in the control of air-breathing. Control of breathing, whether gill ventilation or air-breathing, is influenced by feedback from peripheral and/or central nervous system receptors that respond to changes in PO2, PCO2 and/or pH. Although the specific chemoreceptors mediating the respiratory reflexes have not been conclusively identified, studies in water-breathing teleosts have implicated the neuroepithelial cells (NECs) existing in gill tissues as the O2 sensitive chemoreceptors that initiate the cardiorespiratory reflexes in aquatic vertebrates. Some of the air-breathing fishes, such as Protopterus, Polypterus and Amia have been shown to have NECs in the gills and/or lungs, although the role of these receptors and their innervation in the control of breathing is not known. NECs have been also reported in the specialized respiratory epithelia of accessory respiratory organs (ARO's) of some catfish species and in the gill and skin of the mudskipper Periophthalmodon schlosseri. Unlike teleosts matching an O2-oriented ventilation to ambient O2 levels, lungfishes have central and peripheral H+/CO2 receptors that control the acid-base status of the blood.


Assuntos
Sistema Nervoso , Células Neuroepiteliais/fisiologia , Neurotransmissores/fisiologia , Pele , Ar , Animais , Evolução Biológica , Peixes , Gases , Filogenia , Respiração , Fenômenos Fisiológicos da Pele
17.
Zoology (Jena) ; 125: 41-52, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28830730

RESUMO

Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.


Assuntos
Peixes/metabolismo , Brânquias/citologia , Células Neuroepiteliais/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Pele/citologia , Adaptação Fisiológica , Animais , Biomarcadores , Dióxido de Carbono , Ecossistema , Regulação Enzimológica da Expressão Gênica/fisiologia , Células Neuroepiteliais/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Oxigênio/metabolismo , Serotonina , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transaminases , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
18.
J Morphol ; 278(10): 1321-1332, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28568283

RESUMO

The present article is a comparative, structural study of the lung of Polypterus senegalus and Erpetoichthys calabaricus, two species representative of the two genera that constitute the Polypteriformes. The lung of the two species is an asymmetric, bi-lobed organ that arises from a slit-like opening in the ventral side of the pharynx. The wall is organized into layers, being thicker in P. senegalus. The inner epithelium contains ciliated and non-ciliated bands. The latter constitute the respiratory surface and are wider in E. calabaricus. The air-blood barrier is thin and uniform in P. senegalus and thicker and irregular in E. calabaricus. In the two species, the ciliated areas contain ciliated cells, mucous cells and cells with lamellar bodies. Additionally, P. senegalus contains polymorphous granular cells (PGCs) and neuroendocrine cells (NECs) while E. calabaricus lacks PGCs but shows granular leukocytes and a different type of NEC. Interestingly, ciliated cells and secretory cells show a dual morphology in E. calabaricus indicating the presence of cellular subtypes and suggesting more complex secretory activity. Also in E. calabaricus, cilia show a novel doublet-membrane interaction that may control the displacement of the microtubule doublets. The subepithelium is a connective layer that appears thicker in P. senegalus and contains, in the two species, fibroblasts and granulocytes. The outer layer contains bundles of richly innervated striated muscle. This layer is likely involved in the control of lung motion. In the two species, smooth muscle cells constitute a limiting layer between the subepithelium and the striated muscle compartment. The role of this layer is unclear.


Assuntos
Células Epiteliais/citologia , Peixes/anatomia & histologia , Peixes/fisiologia , Pulmão/citologia , Animais , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Pulmão/ultraestrutura
19.
J Exp Zool B Mol Dev Evol ; 326(4): 250-67, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27245617

RESUMO

We studied the molecular responses to different water oxygen levels in gills and swim bladder of spotted gar (Lepisosteus oculatus), a bimodal breather. Fish at swim-up stage were exposed for 71 days to normoxic, hypoxic, and hyperoxic water conditions. Then, all aquaria were switched to normoxic conditions for recovery until the end of the experiment (120 days). Fish were sampled at the beginning of the experiment, and then at 71 days of exposure and at 8 days of recovery. We first cloned three hypoxia-related genes, hypoxia-inducible factor 2α (HIF-2α), Na(+) /H(+) exchanger 1 (NHE-1), and NHE-3, and uploaded their cDNA sequences in the GeneBank database. We then used One Step Taqman® real-time PCR to quantify the mRNA copies of target genes in gills and swim bladder of fish exposed to different water O2 levels. We also determined the protein expression of HIF-2α and neuronal nitric oxide synthase (nNOS) in the swim bladder by using confocal immunofluorescence. Hypoxic stress for 71 days significantly increased the mRNA copies of HIF-2α and NHE-1 in gills and swim bladder, whereas normoxic recovery for 8 days decreased the HIF-2α mRNA copies to control values in both tissues. We did not found significant changes in mRNA copies of the NHE-3 gene in either gills or swim bladder in response to hypoxia and hyperoxia. Unlike in normoxic swim bladder, double immunohistochemical staining in hypoxic and hyperoxic swim bladder using nNOS/HIF-2α showed extensive bundles of HIF-2α-positive nerve fibers in the trabecular musculature associated with a few varicose nNOS immunoreactive nerve terminals.


Assuntos
Sacos Aéreos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Brânquias/metabolismo , Oxigênio/metabolismo , Sacos Aéreos/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Peixes/genética , Peixes/genética , Peixes/crescimento & desenvolvimento , Regulação da Expressão Gênica , Brânquias/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Óxido Nítrico Sintase/metabolismo , RNA Mensageiro/metabolismo
20.
J Morphol ; 277(7): 853-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027779

RESUMO

The morphological characteristics of the venous pole and pericardium of the heart were examined in three hagfish species, Myxine glutinosa, Eptatretus stoutii, and Eptatretus cirrhatus. In these species, the atrioventricular (AV) canal is long, funnel-shaped and contains small amounts of myocardium. The AV valve is formed by two pocket-like leaflets that lack a papillary system. The atrial wall is formed by interconnected muscle trabeculae and a well-defined collagenous system. The sinus venosus (SV) shows a collagenous wall and is connected to the left side of the atrium. An abrupt collagen-muscle boundary marks the SV-atrium transition. It is hypothesized that the SV is not homologous to that of other vertebrates which could have important implications for understanding heart evolution. In M. glutinosa and E. stoutii, the pericardium is a closed bag that hangs from the tissues dorsal to the heart and encloses both the heart and the ventral aorta. In contrast, the pericardium is continuous with the loose periaortic tissue in E. cirrhatus. In all three species, the pericardium ends at the level of the SV excluding most of the atrium from the pericardial cavity. In M. glutinosa and E. stoutii, connective bridges extend between the base of the aorta and the ventricular wall. In E. cirrhatus, the connections between the periaortic tissue and the ventricle may carry blood vessels that reach the ventricular base. A further difference specific to E. cirrhatus is that the adipose tissue associated with the pericardium contains thyroid follicles. J. Morphol. 277:853-865, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Feiticeiras (Peixe)/anatomia & histologia , Pericárdio/anatomia & histologia , Animais , Aorta/anatomia & histologia , Átrios do Coração/anatomia & histologia , Ventrículos do Coração/anatomia & histologia , Veias/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA