Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12678, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728030

RESUMO

Transistor biosensors are mass-fabrication-compatible devices of interest for point of care diagnosis as well as molecular interaction studies. While the actual transistor gates in processors reach the sub-10 nm range for optimum integration and power consumption, studies on design rules for the signal-to-noise ratio (S/N) optimization in transistor-based biosensors have been so far restricted to 1 µm2 device gate area, a range where the discrete nature of the defects can be neglected. In this study, which combines experiments and theoretical analysis at both numerical and analytical levels, we extend such investigation to the nanometer range and highlight the effect of doping type as well as the noise suppression opportunities offered at this scale. In particular, we show that, when a single trap is active near the conductive channel, the noise can be suppressed even beyond the thermal limit by monitoring the trap occupancy probability in an approach analog to the stochastic resonance effect used in biological systems.

2.
Biosens Bioelectron ; 137: 229-235, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31121460

RESUMO

Silicon nanowires (Si NWs) are the most promising candidates for recording biological signals due to improved interfacing properties with cells and the possibility of high-speed transduction of biochemical signals into detectable electrical responses. The recording of extracellular action potentials (APs) from cardiac cells is important for fundamental studies of AP propagation features reflecting cell activity and the influence of pharmacological substances on the signal. We applied a novel approach of using fabricated Si NW field-effect transistors (FETs) in combination with fluorescent marker techniques to evaluate the functional activity of cardiac cells. Extracellular AP signal recording from HL-1 cardiomyocytes was demonstrated. This method was supplemented by studies of the pharmacological effects of stimulations using noradrenaline (NorA) as a modulator of functional activity on a cellular and subcellular levels, which were also tested using fluorescent marker techniques. The role of calcium alteration and membrane potential were revealed using Fluo-4 AM and tetramethylrhodamine, methyl ester, perchlorate (TMRM) fluorescent dyes. In addition, chemical treatment with sodium dodecyl sulfate (SDS) solutions was tested. The results obtained demonstrate positive prospects for AP monitoring in different treatments for studies related to a wide range of myocardial diseases using lab-on-chip technology.


Assuntos
Potenciais de Ação , Técnicas Biossensoriais , Miócitos Cardíacos/química , Nanofios/química , Humanos , Miócitos Cardíacos/fisiologia , Silício/química
3.
Nano Lett ; 18(11): 7305-7313, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346789

RESUMO

We fabricate two-layer (TL) silicon nanowires (NW) field-effect transistors (FETs) with a liquid gate. The NW devices show advanced characteristics, which reflect reliable single-electron phenomena. A strong modulation effect of channel conductivity with effectively tuned parameters is revealed. The effect opens up prospects for applications in several research fields including bioelectronics and sensing applications. Our results shed light on the nature of single trap dynamics which parameters can be fine-tuned to enhance the sensitivity of liquid-gated TL silicon nanowire FETs.

4.
Nanoscale Res Lett ; 13(1): 87, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29589128

RESUMO

Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.

5.
Small ; 14(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165876

RESUMO

In the present study, transport properties and single trap phenomena in silicon nanowire (NW) field-effect transistors (FETs) are reported. The dynamic behavior of drain current in NW FETs studied before and after gamma radiation treatment deviates from the predictions of the Shockley-Read-Hall model and is explained by the concept taking into account an additional energy barrier in the accumulation regime. It is revealed that dynamics of charge exchange processes between single trap and nanowire channel strongly depend on gamma radiation treatment. The results represent potential for utilizing single trap phenomena in a number of advanced devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA