Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
Heliyon ; 10(9): e29778, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694109

RESUMO

Understanding plant-microbe interaction can be useful in identifying the microbial drivers of plant invasions. It is in this context that we explored the diversity of endophytic microbes from leaves of Anthemis cotula, an annual plant that is highly invasive in Kashmir Himalaya. We also tried to establish the role of endophytes in the invasiveness of this alien species. We collected and processed leaf samples from three populations at three different sites. A total of 902 endophytic isolates belonging to 4 bacterial and 2 fungal phyla were recovered that belonged to 27 bacterial and 14 fungal genera. Firmicutes (29.1%), Proteobacteria (24.1%), Ascomycota (22.8%) and Actinobacteria (19%) were dominant across all samples. Plant growth promoting traits, such as Ammonia production, Indole Acetic Acid (IAA) production, Phosphate solubilization and biocontrol activity of these endophytes were also studied and most of the isolates (74.68%) were positive for ammonia production. IAA production, phosphate solubilization and biocontrol activity was present in 39.24%, 36.70% and 20.26% isolates, respectively. Furthermore, Botrytis cinerea, a pathogen of A. cotula in its native range, though present in Kashmir Himalaya does not affect A. cotula probably due to the presence of leaf endophytic microbial antagonists. Our results highlight that the beneficial plant growth promoting interactions and enemy suppression by leaf endophytes of A. cotula, may be contributing to its survival and invasion in the Kashmir Himalaya.

2.
Heliyon ; 10(5): e25408, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439843

RESUMO

In this paper, an innovative transactive energy approach is proposed as viable option for coordinated distribution system planning across a certain horizon. The proposed approach is evaluated across a multi-looped (meshed) test system and is implemented with load growth having prosumers participating in the electrical market in transactive energy system aiming at evaluation on techno-economic basis. Apart from prosumer sensitivity analysis, evaluations have been carried across reducing total production cost of energy, reduction in per unit price, active power losses. Whereas improving voltage profile, cost of scheduling and consumer per kWh purchase and sales in comparison with traditional counterpart. The proposed framework includes optimization algorithm aiming at sources scheduling and IEEE 69 system for validation. The algorithm minimizes cost, maximizes energy efficiency, increases renewable energy mix and reduces consumers cost of energy purchase. Reduction of 51.44 % in cost of energy is achieved, whereas loss reduction of 12.6% is achieved. The comparison of IEEE 69-bus base case with the 10 %, 15% and 20% transactive energy applied with simulations to evaluate performance parameters that will directly benefit both prosumers and utility alike in-terms of low bills and further reduction of stress on the grid amid load growth across multiple years.

3.
Clin Exp Immunol ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066678

RESUMO

Atopic Dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of TGF-ß1 in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-ß1/SMAD3 signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-ß1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry, whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-ß1 mRNA expression in the lesional AD skin (p<0.0001). Immunohistochemistry also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-ß1 mRNA showed an association with vitamin D deficiency in serum (p<0.02), and its protein expression was linked with the disease severity (p<0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (p = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-ß1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-ß1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.

4.
J Nematol ; 55(1): 20230051, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026553

RESUMO

Barley root-knot nematode, Meloidogyne naasi Franklin, 1965, is one of the most important pest nematodes infecting monocots (Franklin, 1965). Two-inch core soil samples collected from a golf course in Ada County, Idaho were submitted for identification in November of 2019. A high number of Meloidogyne sp. juveniles were recovered from both soil samples using sieving and decantation followed by the sugar centrifugal flotation method. They were examined by light microscopy, morphometric measurements, and multiple molecular markers, including the ribosomal 28S D2-D3 and intergenic spacer 2 (IGS-2) regions, mitochondrial markers cytochrome oxidase I (COI) and the interval from COII to 16S, and the protein-coding gene Hsp90. Morphometrics as well as BlastN comparisons with other root-knot nematode sequences from GenBank were consistent with identification as M. naasi. Phylogenetic trees inferred from 28S, IGS-2, COI, or Hsp90 alignments each separated the Idaho population into a strongly supported clade with other populations of M. naasi, while the COII-16S interval could not resolve M. naasi from M. minor. This report represents the first morphological and molecular characterization of Meloidogyne naasi from turfgrass in Idaho.

5.
PLoS One ; 18(10): e0292588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37797062

RESUMO

The beech leaf disease nematode, Litylenchus crenatae subsp. mccannii, is recognized as a newly emergent nematode species that causes beech leaf disease (BLD) in beech trees (Fagus spp.) in North America. Changes of leaf morphology before emergence from the bud induced by BLD can provoke dramatic effects on the leaf architecture and consequently to tree performance and development. The initial symptoms of BLD appear as dark green, interveinal banding patterns of the leaf. Despite the fast progression of this disease, the cellular mechanisms leading to the formation of such aberrant leaf phenotype remains totally unknown. To understand the cellular basis of BLD, we employed several types of microscopy to provide an exhaustive characterization of nematode-infected buds and leaves. Histological sections revealed a dramatic cell change composition of these nematode-infected tissues. Diseased bud scale cells were typically hypertrophied and showed a high variability of size. Moreover, while altered cell division had no influence on leaf organogenesis, induction of cell proliferation on young leaf primordia led to a dramatic change in cell layer architecture. Hyperplasia and hypertrophy of the different leaf cell layers, coupled with an abnormal proliferation of chloroplasts especially in the mesophyll cell layers, resulted in the typical interveinal leaf banding. These discrepancies in leaf cell structure were depicted by an abnormal rate of cellular division of the leaf interveinal areas infected by the nematode, promoting significant increase of cell size and leaf thickness. The formation of symptomatic BLD leaves is therefore orchestrated by distinct cellular processes, to enhance the value of these feeding sites and to improve their nutrition status for the nematode. Our findings thus uncover relevant cellular events and provide a structural framework to understand this important disease.


Assuntos
Fagus , Folhas de Planta/metabolismo , Árvores , Células do Mesofilo , Divisão Celular
6.
Eur Rev Med Pharmacol Sci ; 27(14): 6831-6842, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37522694

RESUMO

OBJECTIVE: Huntington's disease is a dominant autosomal inherited neurodegenerative disease that results in progressive impairment, characterized by dementia, chorea, and behavioral and cognitive decline. The objective of this study was to investigate the potential activity of metalloproteins against the huntingtin protein using various insertion-based engineering computational methods. Metalloproteins, metal protein complexes involved in important biochemical and physiological processes, were explored as potential drug candidates for Huntington's disease. MATERIALS AND METHODS: A total of 18 metalloproteins were selected as drug candidates and studied to assess their potential inhibitory effects on the huntingtin protein. The screening process was based on the lowest binding energy. The metalloprotein with the lowest docking score was chosen for side chain insertion of neurogenerative amino acids. The engineered metalloprotein was then evaluated based on physiochemical properties, allergenicity, toxicity, and surface accessibility. Cloning and expression analysis was performed to further investigate its potential as a therapeutic agent. RESULTS: The metalloprotein chosen for side chain insertion, cytochrome C oxidase, showed promising results. It was computed as a probable non-allergen and exhibited no toxic domains, indicating its non-toxic nature. Additionally, it demonstrated a strong binding affinity with the huntingtin protein, with a binding energy of -1,253.3 Kcal/mol. CONCLUSIONS: Metal-based proteins, when engineered with additional neurogenerative amino acids, hold potential as drug candidates for treating neurodegenerative diseases such as Huntington's disease. The successful development of these engineered metalloproteins could offer therapeutic advantages. Further testing, both in vitro and in vivo, is necessary to evaluate their efficacy and validate their potential activity as novel drugs for the treatment of neurodegenerative diseases.


Assuntos
Doença de Huntington , Metaloproteínas , Doenças Neurodegenerativas , Humanos , Aminoácidos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Metaloproteínas/uso terapêutico
7.
Plant Cell Physiol ; 64(10): 1124-1138, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37498947

RESUMO

From simple algal forms to the most advanced angiosperms, calcium oxalate (CaOx) crystals (CRs) occur in the majority of taxonomic groups of photosynthetic organisms. Various studies have demonstrated that this biomineralization is not a simple or random event but a genetically regulated coordination between calcium uptake, oxalate (OX) synthesis and, sometimes, environmental stresses. Certainly, the occurrence of CaOx CRs is old; however, questions related to their genesis, biosynthesis, significance and genetics exhibit robust evolution. Moreover, their speculated roles in bulk calcium regulation, heavy metal/OX detoxification, light reflectance and photosynthesis, and protection against grazing and herbivory, besides other characteristics, are gaining much interest. Thus, it is imperative to understand their synthesis and regulation in relation to the ascribed key functions to reconstruct future perspectives in harnessing their potential to achieve nutritious and pest-resistant crops amid anticipated global climatic perturbations. This review critically addresses the basic and evolving concepts of the origin (and recycling), synthesis, significance, regulation and fate vis-à-vis various functional aspects of CaOx CRs in plants (and soil). Overall, insights and conceptual future directions present them as potential biominerals to address future climate-driven issues.


Assuntos
Oxalato de Cálcio , Cálcio , Oxalato de Cálcio/química , Cálcio/metabolismo , Fotossíntese/fisiologia , Transporte Biológico , Plantas/metabolismo
8.
Mol Immunol ; 157: 214-224, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084506

RESUMO

BACKGROUND: Atopic Dermatitis (AD) is a chronic inflammatory skin disorder with evidence of lichenification in later stages. There is mounting evidence supporting the role of TGF- ß1 in mediating inflammation as well as subsequent tissue remodeling, often resulting in fibrosis. Given the role of genetic variants in the differential expression of TGF-ß1 in various diseases, this study seeks to ascertain the role of TGF-ß1 promoter variants (rs1800469 and rs1800468) in AD susceptibility, as well as their association with TGF- ß1 mRNA expression, TGF- ß1 serum levels and skin prick test positivity in Atopic Dermatitis patients. METHODS: An aggregate of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for TGF-ß1 promoter polymorphisms by PCR-RFLP. TGF- ß1 mRNA was quantified by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and serum TGF- ß1, and total IgE levels were determined by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites and food allergens. RESULTS: A higher frequency of TT genotypes of rs1800469 (OR = 7.7, p = 0.0001) and GA+AA genotypes of rs1800468 (OR-4.4, p < 0.0001) were observed in AD cases than those in controls. Haplotype analysis demonstrated that TG haplotype carriers had an increased risk of AD (p = 0.013). Quantitative analysis revealed a significant upregulation of both mRNA (p = 0.0002) and serum levels (p < 0.0001) of TGF- ß1 with a substantial positive correlation between them (Correlation coefficient=0.504; p = 0.01). Moreover, serum TGF-ß1 levels were associated with quality of life (p = 0.03), the severity of the disease (p = 0.03), and House dust mite allergy (p = 0.01) whereas TGF-ß1 mRNA levels positively correlated with disease severity(p = 0.02). Stratification analysis revealed that the TT genotype of rs1800469 was associated with higher IgE levels (p = 0.01) and eosinophil percentage(p = 0.007) whereas the AA genotype of rs1800468 correlated with elevated serum IgE levels (p = 0.01). Besides, no significant association of genotypes with mRNA and serum expression of TGF-ß1 was observed. CONCLUSION: Our study indicates that TGF-ß1 promoter SNPs bear a significant risk of AD development. Moreover, upregulation of TGF-ß1 mRNA and serum levels and their association with disease severity, quality of life, and HDM allergy suggests its role as a diagnostic/prognostic biomarker that could help in the development of new therapeutic and prevention strategies.


Assuntos
Dermatite Atópica , Hipersensibilidade , Humanos , Dermatite Atópica/genética , Dermatite Atópica/tratamento farmacológico , Fator de Crescimento Transformador beta1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Qualidade de Vida , Doença Crônica , Imunoglobulina E
9.
Immunobiology ; 228(3): 152390, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100019

RESUMO

BACKGROUND: Atopic Dermatitis (AD) is a multifactorial cutaneous disorder associated with chronic inflammation of the skin. Growing evidence points to TGF-ß/SMAD signaling as a key player in mediating inflammation and the subsequent tissue remodeling, often resulting in fibrosis. This study investigates the role of a core transcription factor involved in TGF-ß signaling i.e., SMAD3 genetic variants (rs4147358) in AD predisposition and its association with SMAD3 mRNA expression, serum IgE levels, and sensitization to various allergens in AD patients. METHODS: A total of 246 subjects including 134 AD cases and 112 matched healthy controls were genotyped for SMAD3 intronic SNP by PCR-RFLP. mRNA expression of SMAD3 was determined by quantitative Real-Time PCR (qRT-PCR), Vitamin-D levels by chemiluminescence, and total serum IgE levels by ELISA. In-vivo allergy testing was performed for the evaluation of allergic reactions to house dust mites (HDM) and food allergens. RESULTS: A significantly higher frequency of mutant genotype AA (cases: 19.4% vs controls: 8.9%) (OR = 2.8, CI = 1.2 - 6.7, p = 0.01) was observed in AD cases. The mutant allele 'A' also showed a 1.9-fold higher risk for AD compared to the wild allele 'C' indicating that the carriers of the A allele have a higher risk for AD predisposition (OR-1.9, CI = 1.3-2.8, p < 0.001). In addition, quantitative analysis of SMAD3 mRNA in peripheral blood showed 2.8-fold increased expression in AD cases as compared to healthy controls. Stratification analysis revealed the association of the mutant AA genotype with deficient serum Vitamin D levels (p = 0.02) and SMAD3 mRNA overexpression with HDM sensitization (p = 0.03). Furthermore, no significant association of genotypes with SMAD3 mRNA expression was observed. CONCLUSION: Our study indicates that SMAD3 intronic SNP bears a significant risk of AD development. Moreover, overexpression of SMAD3 mRNA and its association with HDM sensitization highlights the possible role of this gene in AD pathogenesis.


Assuntos
Dermatite Atópica , Hipersensibilidade Alimentar , Animais , Humanos , Estudos de Casos e Controles , Imunoglobulina E , Alérgenos , Pyroglyphidae , Inflamação , Fator de Crescimento Transformador beta , Proteína Smad3
10.
Int Microbiol ; 26(4): 1053-1071, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093323

RESUMO

Investigating the microbial communities associated with invasive plant species can provide insights into how these species establish and thrive in new environments. Here, we explored the fungal species associated with the roots of the invasive species Anthemis cotula L. at 12 sites with varying elevations in the Kashmir Himalaya. Illumina MiSeq platform was used to identify the species composition, diversity, and guild structure of these root-associated fungi. The study found a total of 706 fungal operational taxonomic units (OTUs) belonging to 8 phyla, 20 classes, 53 orders, 109 families, and 160 genera associated with roots of A. cotula, with the most common genus being Funneliformis. Arbuscular mycorrhizal fungi (AMF) constituted the largest guild at higher elevations. The study also revealed that out of the 12 OTUs comprising the core mycobiome, 4 OTUs constituted the stable component while the remaining 8 OTUs comprised the dynamic component. While α-diversity did not vary across sites, significant variation was noted in ß-diversity. The study confirmed the facilitative role of the microbiome through a greenhouse trial in which a significant effect of soil microbiome on height, shoot biomass, root biomass, number of flower heads, and internal CO2 concentration of the host plant was observed. The study indicates that diverse fungal mutualists get associated with this invasive alien species even in nutrient-rich ruderal habitats and may be contributing to its spread into higher elevations. This study highlights the importance of understanding the role of root-associated fungi in invasion dynamics and the potential use of mycobiome management strategies to control invasive species.


Assuntos
Anthemis , Microbiota , Micobioma , Micorrizas , Humanos , Raízes de Plantas/microbiologia , Micorrizas/genética , Microbiologia do Solo , Fungos/genética
11.
J Nematol ; 55(1): 20230003, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36880011

RESUMO

Specimens of a tylenchid nematode were recovered in 2019 from soil samples collected from a corn field, located in Pickens County, South Carolina, USA. A moderate number of Tylenchus sp. adults (females and males) were recovered. Extracted nematodes were examined morphologically and molecularly for species identification, which indicated that the specimens of the tylenchid adults were a new species, described herein as Tylenchus zeae n. sp. Morphological examination and the morphometric details of the specimens were very close to the original descriptions of Tylenchus sherianus and T. rex. However, females of the new species can be differentiated from these species by body shape and length, shape of excretory duct, distance between anterior end and esophageal intestinal valve, and a few other characteristics given in the diagnosis. Males of the new species can be differentiated from the two closely related species by tail, spicules, and gubernaculum length. Cryo-scanning electron microscopy confirmed head bearing five or six annules; four to six cephalic sensilla represented by small pits at the rounded corners of the labial plate; a small, round oral plate; and a large, pit-like amphidial opening confined to the labial plate and extending three to four annules beyond it. Phylogenetic analysis of 18S rRNA gene sequences placed Tylenchus zeae n. sp. in a clade with Tylenchus arcuatus and several Filenchus spp., and the mitochondrial cytochrome oxidase c subunit 1 (COI) gene region separated the new species from T. arcuatus and other tylenchid species. In the 28S tree, T. zeae n. sp. showed a high level of sequence divergence and was positioned outside of the main Tylenchus-Filenchus clade.

12.
Microbiol Res ; 269: 127318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36753851

RESUMO

In recent years, the microbiome has attracted much attention because of the multiple roles and functions that microbes play in plants, animals, and human beings. Seed-associated microbes are of particular interest in being the initial microbial inoculum that affects the critical early life stages of a plant. The seed-microbe interactions are also known to improve nutrient acquisition, resilience against pathogens, and resistance against abiotic stresses. Despite these diverse roles, the seed microbiome has received little attention in plant ecology. Thus, we review the current knowledge on seed microbial diversity, community structure, and functions obtained through culture-dependent and culture-independent approaches. Furthermore, we present a comprehensive synthesis of the ecological literature on seed-microbe interactions to better understand the impact of these interactions on plant health and productivity. We suggest that future research should focus on the role of the seed microbiome in the establishment, colonization and spread of plant species in their native and non-native ranges as it may provide new insights into conservation biology and invasion ecology.


Assuntos
Microbiota , Plantas , Humanos , Sementes , Ecologia , Interações Microbianas
13.
Micromachines (Basel) ; 14(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838132

RESUMO

This article presents the results of the synthesis of Se NPs stabilized by a quaternary ammonium compound-catamine AB. Se NPs were obtained by chemical reduction in an aqueous medium. In the first stage of this study, the method of synthesis of Se NPs was optimized by a multifactorial experiment. The radius of the obtained samples was studied by dynamic light scattering, and the electrokinetic potential was studied using acoustic and electroacoustic spectrometry. Subsequently, the samples were studied by transmission electron microscopy, and the analysis of the data showed that a bimodal distribution is observed in negatively charged particles, where one fraction is represented by spheres with a diameter of 45 nm, and the second by 1 to 10 nm. In turn, positive Se NPs have a diameter of about 70 nm. In the next stage, the influence of the active acidity of the medium on the stability of Se NPs was studied. An analysis of the obtained data showed that both sols of Se NPs exhibit aggregative stability in the pH range from 2 to 6, while an increase in pH to an alkaline medium is accompanied by a loss of particle stability. Next, we studied the effect of ionic strength on the aggregative stability of Se NPs sols. It was found that negatively charged ions have a significant effect on the particle size of the positive sol of Se NPs, while the particle size of the negative sol is affected by positively charged ions.

14.
Gels ; 9(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36661823

RESUMO

A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol-gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05-0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.

15.
Nat Ecol Evol ; 7(3): 405-413, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702858

RESUMO

High-elevation ecosystems are among the few ecosystems worldwide that are not yet heavily invaded by non-native plants. This is expected to change as species expand their range limits upwards to fill their climatic niches and respond to ongoing anthropogenic disturbances. Yet, whether and how quickly these changes are happening has only been assessed in a few isolated cases. Starting in 2007, we conducted repeated surveys of non-native plant distributions along mountain roads in 11 regions from 5 continents. We show that over a 5- to 10-year period, the number of non-native species increased on average by approximately 16% per decade across regions. The direction and magnitude of upper range limit shifts depended on elevation across all regions. Supported by a null-model approach accounting for range changes expected by chance alone, we found greater than expected upward shifts at lower/mid elevations in at least seven regions. After accounting for elevation dependence, significant average upward shifts were detected in a further three regions (revealing evidence for upward shifts in 10 of 11 regions). Together, our results show that mountain environments are becoming increasingly exposed to biological invasions, emphasizing the need to monitor and prevent potential biosecurity issues emerging in high-elevation ecosystems.


Assuntos
Altitude , Ecossistema , Espécies Introduzidas , Plantas , Dispersão Vegetal
16.
Risk Anal ; 43(3): 467-479, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35318710

RESUMO

Huge economic costs and ecological impacts of invasive alien species (IAS) in the protected areas (PAs) worldwide make their timely prediction and potential risk assessment of central importance for effective management. While the preborder weed risk assessment framework has been extensively evaluated and implemented, the postborder species risk assessment framework has not been subjected to the same degree of scrutiny. Here we used a rather more realistic modified version of the Australian Weed Risk framework (AWRM) for Dachigam National Park (DNP) in Kashmir Himalaya against 84 plant species, including 55 alien species and 29 fast spreading native species, for risk analysis. We found two very high-risk species, three high-risk species, 10 medium-risk species, 29 low-risk species, and 40 negligible-risk species in the DNP. The containment scores accordingly ranged from 14.4 to 293.5 comprising of 27 species that can be contained with very high feasibility, 23 species with high feasibility, 14 species with medium feasibility, and 12 species which cannot be contained easily thereby having low feasibility of containment (FOC) score. However, eight species which have a negligible FOC score are difficult to contain within their infestation sites. Our results demonstrate the merit of the AWRM with a caution that the necessary region-specific modifications may help in its better implementation. Overall, these results provide quite a promising tool in the hands of protected area managers to timely and effectively deal with the problem of plant invasions.


Assuntos
Ecossistema , Parques Recreativos , Austrália , Espécies Introduzidas , Plantas , Medição de Risco
17.
Rep Pract Oncol Radiother ; 27(5): 787-796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523804

RESUMO

Background: The polymorphic variations of human telomerase reverse transcriptase (hTERT) gene play an important role in predisposition to carcinogenesis. The current study aimed to elucidate the genetic predisposition to bladder cancer in two important variants, rs2736098 and rs2736100 of hTERT gene. Materials and methods: Confirmed 130 patients of bladder cancer and 200 healthy controls were genotyped by PCR-RFLP to determine different variants of hTERT rs2736098 and rs2736100. Results: hTERT rs2736098 homozygous variant AA genotype frequency was observed to significantly differ 2-fold between cases and controls (26.15% vs. 13.5%) (p = 0.02). In addition, rare 'A' allele significantly differed among two groups (cases: 47% versus controls: 39%: p = 0.03). hTERT rs2736098 was observed to be presented significantly more in high stage tumors (p = 0.02). hTERT rs2736100 genotype AA or variant allele A showed no significant difference between cases and controls. Haplotype CA displayed significantly different pattern of frequency as 0.5 in cases as compared to 0.16 in controls (p < 0.0001). Combination of variant A/G haplotype frequency implicated more in cases than in controls (0.34 vs. 0.14, p = 0.001). Conclusions: It is concluded that hTERT rs2736098 polymorphic variant has a vital role to confer a strong risk to bladder cancer in our population. Further, hTERT haplotypes CA and AG inhTERT could prove to be a promising tool to screen the risk for bladder cancer.

18.
J Nematol ; 54(1): 20220041, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36338419

RESUMO

Sauertylenchus maximus was discovered during a survey conducted at the Arlington National Cemetery, Virginia, for the type specimens of Hoplolaimus galeatus. Besides the fresh material, the fixed specimens of S. maximus were also studied by molecular and morphological means. The morphological and morphometric characteristics of the recovered fresh material were consistent with the original and other description(s) of this species. The fixed specimens used in this study were preserved in a 3% formaldehyde and 2% glycerin solution for over 20 yr. Molecular analyses of the fresh and fixed specimens were performed using internal transcribed spacer, D2-D2 expansion segments of 28S large subunits, and 18S small subunit ribosomal DNA sequences. To our knowledge, this represents the first report of S. maximus from Virginia and the first report of a successful DNA extraction from fixed nematode specimens.

19.
J Phys Condens Matter ; 51(1)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301709

RESUMO

We report pair distribution function studies on the relationship between the metal-insulator transition (MIT) and lattice distortions in pure and Ti-substituted bilayer Ca3Ru2O7. Structural refinements performed as a function of temperature, magnetic field and length scale reveal the presence of lattice distortions not only within but also orthogonal to the bilayers. Because of the distortions, the local and average crystal structure differ across a broad temperature region extending from room temperature to temperatures below the MIT. The coexistence of distinct lattice distortions is likely to be behind the marked structural flexibility of Ca3Ru2O7under external stimuli. This observation highlights the ubiquity of lattice distortions in an archetypal Mott system and calls for similar studies on other families of strongly correlated materials.

20.
Energies (Basel) ; 15(1): 5, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35910687

RESUMO

In addition to zero-carbon generation, the plummeting cost of renewable energy sources (RES) is enabling the increased use of distributed-generation sources. Although the RES appear to be a cheaper source of energy, without the appropriate design of the RES with a true understanding of the nature of the load, they can be an unreliable and expensive source of energy. Limited research has been aimed at designing small-scale hybrid energy systems for irrigation pumping systems, and these studies did not quantify the water requirement, or in turn the energy required to supply the irrigation water. This paper provides a comprehensive feasibility analysis of an off-grid hybrid renewable energy system for the design of a water-pumping system for irrigation applications in Sudan. A systematic and holistic framework combined with a techno-economic optimization analysis for the planning and design of hybrid renewable energy systems for small-scale irrigation water-pumping systems is presented. Different hybridization cases of solar photovoltaic, wind turbine and battery storage at 12 different sites in Sudan are simulated, evaluated, and compared, considering the crop water requirement for different crops, the borehole depth, and the stochasticity of renewable energy resources. Soil, weather, and climatic data from 12 different sites in Sudan were used for the case studies, with the key aim to find the most robust and reliable solution with the lowest system cost. The results of the case studies suggest that the selection of the system is highly dependent on the cost, the volatility of the wind speed, solar radiation, and the size of the system; at present, hybridization is not the primary option at most of sites, with the exception of two. However, with the reduction in price of wind technology, the possibility of hybrid generation will rise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA