Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurotox Res ; 39(2): 359-368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32955722

RESUMO

Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-ß) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-ß, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Encefalite/metabolismo , Animais , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/complicações , Transtornos Cerebrovasculares/etiologia , Encefalite/etiologia , Masculino , Camundongos , Neurônios/metabolismo
2.
Biofactors ; 47(2): 190-197, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33098588

RESUMO

Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Inflamação/tratamento farmacológico , Luteolina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/virologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/virologia , COVID-19/complicações , COVID-19/virologia , Flavonas/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/virologia , Neurônios/efeitos dos fármacos , Neurônios/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
3.
Mediators Inflamm ; 2020: 4243953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684835

RESUMO

Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Mastócitos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Quimiocina CCL2/sangue , Claudina-5/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
Neuroscientist ; 26(5-6): 402-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684080

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Citocinas/imunologia , Mastócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Estresse Psicológico/fisiopatologia , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Mastócitos/virologia , Doenças do Sistema Nervoso/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2
5.
Clin Ther ; 42(6): 974-982, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32184013

RESUMO

PURPOSE: Psychological stress is a significant health problem in veterans and their family members. Traumatic brain injury (TBI) and stress lead to the onset, progression, and worsening of several inflammatory and neurodegenerative diseases in veterans and civilians. Alzheimer's disease (AD) is a progressive, irreversible neuroinflammatory disease that causes problems with memory, thinking, and behavior. TBIs and chronic psychological stress cause and accelerate the pathology of neuroinflammatory diseases such as AD. However, the precise molecular and cellular mechanisms governing neuroinflammation and neurodegeneration are currently unknown, especially in veterans. The purpose of this review article was to advance the hypothesis that stress and TBI-mediated immune response substantially contribute and accelerate the pathogenesis of AD in veterans and their close family members and civilians. METHODS: The information in this article was collected and interpreted from published articles in PubMed between 1985 and 2020 using the key words stress, psychological stress, Afghanistan war, Operation Enduring Freedom (OEF), Iraq War, Operation Iraqi Freedom (OIF), Operation New Dawn (OND), traumatic brain injury, mast cell and stress, stress and neuroimmune response, stress and Alzheimer's disease, traumatic brain injury, and Alzheimer's disease. FINDINGS: Chronic psychological stress and brain injury induce the generation and accumulation of beta-amyloid peptide, amyloid plaques, neurofibrillary tangles, and phosphorylation of tau in the brain, thereby contributing to AD pathogenesis. Active military personnel and veterans are under enormous psychological stress due to various war-related activities, including TBIs, disabilities, fear, new environmental conditions, lack of normal life activities, insufficient communications, explosions, military-related noise, and health hazards. Brain injury, stress, mast cell, and other immune cell activation can induce headache, migraine, dementia, and upregulate neuroinflammation and neurodegeneration in veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn. TBIs, posttraumatic stress disorder, psychological stress, pain, glial activation, and dementia in active military personnel, veterans, or their family members can cause AD several years later in their lives. We suggest that there are increasing numbers of veterans with TBIs and stress and that these veterans may develop AD late in life if no appropriate therapeutic intervention is available. IMPLICATIONS: Per these published reports, the fact that TBIs and psychological stress can accelerate the pathogenesis of AD should be recognized. Active military personnel, veterans, and their close family members should be evaluated regularly for stress symptoms to prevent the pathogenesis of neurodegenerative diseases, including AD.


Assuntos
Campanha Afegã de 2001- , Doença de Alzheimer/epidemiologia , Lesões Encefálicas/epidemiologia , Guerra do Iraque 2003-2011 , Estresse Psicológico/epidemiologia , Veteranos/psicologia , Doença de Alzheimer/imunologia , Lesões Encefálicas/imunologia , Humanos , Estresse Psicológico/imunologia
6.
Mol Neurobiol ; 56(1): 378-393, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29704201

RESUMO

Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disorder that leads to severe cognitive impairment in elderly patients. Chronic neuroinflammation plays an important role in the AD pathogenesis. Glia maturation factor (GMF), a proinflammatory molecule discovered in our laboratory, is significantly upregulated in various regions of AD brains. We have previously reported that GMF is predominantly expressed in the reactive glial cells surrounding the amyloid plaques (APs) in the mouse and human AD brain. Microglia are the major source of proinflammatory cytokines and chemokines including GMF. Recently clustered regularly interspaced short palindromic repeats (CRISPR) based genome editing has been recognized to study the functions of genes that are implicated in various diseases. Here, we investigated if CRISPR-Cas9-mediated GMF gene editing leads to inhibition of GMF expression and suppression of microglial activation. Confocal microscopy of murine BV2 microglial cell line transduced with an adeno-associated virus (AAV) coexpressing Staphylococcus aureus (Sa) Cas9 and a GMF-specific guide RNA (GMF-sgRNA) revealed few cells expressing SaCas9 while lacking GMF expression, thereby confirming successful GMF gene editing. To further improve GMF gene editing efficiency, we developed lentiviral vectors (LVs) expressing either Streptococcus pyogenes (Sp) Cas9 or GMF-sgRNAs. BV2 cells cotransduced with LVs expressing SpCas9 and GMF-sgRNAs revealed reduced GMF expression and the presence of indels in the exons 2 and 3 of the GMF coding sequence. Lipopolysaccharide (LPS) treatment of GMF-edited cells led to reduced microglial activation as shown by reduced p38 MAPK phosphorylation. We believe that targeted in vivo GMF gene editing has a significant potential for developing a unique and novel AD therapy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Edição de Genes , Fator de Maturação da Glia/genética , Microglia/metabolismo , Terapia de Alvo Molecular , Animais , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Análise Mutacional de DNA , Dependovirus/metabolismo , Fator de Maturação da Glia/metabolismo , Lentivirus/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , RNA Guia de Cinetoplastídeos/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA