Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Drug Alcohol Depend ; 149: 166-72, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25697912

RESUMO

BACKGROUND: Escalation of consumption is a hallmark of cocaine addiction. Many animal models reveal escalation by increasing the duration of drug access (e.g., 6-24 h/day) after longer histories of self-administration. We recently developed a method that reveals escalation early post-acquisition under shorter access conditions. However, whether or not rats will escalate cocaine consumption both early post-acquisition under short access (2 h/day) conditions, and later under long access (6 h/day) conditions, has not been demonstrated. METHODS: All rats acquired cocaine self-administration (0.8 mg/kg, i.v.) under 2 h conditions, and then continued 2h self-administration for an additional 13 sessions. Then, rats were assigned either to 2 or 6h conditions, and self-administered cocaine (0.8 mg/kg, i.v.) for an additional 19 sessions. In addition, four cocaine-induced locomotor activity measurements were taken for each rat: before cocaine exposure, after non-contingent cocaine administration, and after escalation in the short and long access experimental phases. RESULTS: Following acquisition, rats displayed a robust escalation of intake during 2 h sessions. Rats that self-administered cocaine in continued 2h sessions exhibited stable intake, whereas rats that self-administered cocaine in 6h sessions further escalated intake. Despite the second escalation in 6h rats, cocaine-induced locomotor activity did not differ between 2 and 6h rats. CONCLUSIONS: Escalation of cocaine self-administration can occur in the same rats both early post-acquisition, and later under long access conditions. Importantly, this early post-acquisition period provides a new opportunity to determine the mechanisms first involved in the escalation phenomenon.


Assuntos
Cocaína/administração & dosagem , Animais , Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Ratos , Autoadministração , Fatores de Tempo
2.
Sci Transl Med ; 6(251): 251fs33, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25163476

RESUMO

By applying the strengths of corporate models for effective teamwork, academic scientists can drive transdisciplinary research and accelerate biomedical translation.


Assuntos
Corporações Profissionais , Pesquisa/educação , Ensino , Universidades , Comércio/educação , Transferência de Tecnologia
3.
PLoS One ; 9(4): e95019, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736531

RESUMO

Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons.


Assuntos
Comportamento Alimentar , Frutose/administração & dosagem , Região Hipotalâmica Lateral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Núcleo Accumbens/patologia , Animais , Metabolismo Energético , Imuno-Histoquímica , Masculino , Antagonistas dos Receptores de Orexina , Receptores de Orexina , Orexinas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Fatores de Tempo
4.
Neuropharmacology ; 75: 347-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973314

RESUMO

Behavioral responsiveness to initial cocaine use varies among individuals and may contribute to differential vulnerability to cocaine addiction. Rats also exhibit individual differences in cocaine's effects and can be classified as low or high cocaine responders (LCRs or HCRs, respectively), based on their initial cocaine-induced locomotor activity (10 mg/kg, i.p.). Here, we used the extinction/reinstatement model to address whether or not LCRs and HCRs differ in (i) extinction/reinstatement of cocaine self-administration behavior and (ii) levels of metabotropic glutamate receptors (mGluRs) following these behaviors. During the earliest acquisition sessions, LCRs exhibited significantly greater cocaine intake (0.8 mg/kg/infusion) and cocaine-paired lever responding than HCRs, but intake and lever responding converged by the end of the cocaine self-administration portion of the study. LCRs and HCRs did not differ in cocaine seeking during the first extinction session and extinguished cocaine seeking similarly. HCRs exhibited greater reinstatement than LCRs to lower (2.5 and 5 mg/kg), but not higher (10 mg/kg), i.p. priming doses of cocaine. The effect of drug-paired cues on reinstatement following extinction was complex, with HCRs and LCRs showing the greater effect of cue depending on the order in which cue- and drug-primed tests were given. Western blot analysis revealed that mGluR5 heteromers were significantly higher in the dorsal striatum of HCRs than LCRs following reinstatement testing. Although our previous findings with the LCR/HCR model have uniformly supported the idea that lower initial cocaine-induced activation predicts more ready development of cocaine addiction-like behaviors, here, we show a more complex relationship with cocaine reinstatement.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/patologia , Cocaína/farmacologia , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Reforço Psicológico , Análise de Variância , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Condicionamento Operante/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Relação Dose-Resposta a Droga , Extinção Psicológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/genética , Autoadministração
5.
Neurosci Biobehav Rev ; 37(8): 1738-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23850581

RESUMO

Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine's discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Ratos
6.
Synapse ; 67(10): 668-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23564231

RESUMO

Variations in the expression levels of the dopamine transporter (DAT) can influence responsiveness to psychostimulant drugs like cocaine. To better understand this relationship, we studied a new DAT-low expresser (DAT-LE) mouse model and performed behavioral and biochemical studies with it. Immunoblotting and [(3) H]WIN 35,428 binding analyses revealed that these mice express ∼35% of wildtype (WT) mouse striatal DAT levels. Compared to WT mice, DAT-LE mice were hyperactive in a novel open-field environment. Despite their higher basal locomotor activity, cocaine (10 or 20 mg/kg, i.p.) induced greater locomotor activation in DAT-LE mice than in WT mice. The maximal velocity (Vmax ) of DAT-mediated [(3) H]DA uptake into striatal synaptosomes was reduced by 46% in DAT-LE mice, as compared to WT. Overall, considering the reduced number of DAT binding sites (Bmax ) along with the reduced Vmax in DAT-LE mice, a 2-fold increase in DA uptake turnover rate (Vmax /Bmax ) was found, relative to WT mice. This suggests that neuroadaptive changes have occurred in the DAT-LE mice that would help to compensate for their low DAT numbers. Interestingly, these changes do not include a reduction in tyrosine hydroxylase levels, as was previously reported in DAT knockout homozygous and heterozygous animals. Further, these changes are not sufficient to prevent elevated novelty- and cocaine-induced locomotor activity. Hence, these mice represent a unique model for studying changes of in vivo DAT function and regulation that result from markedly reduced levels of DAT expression.


Assuntos
Cocaína/análogos & derivados , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Animais , Transporte Biológico Ativo , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Deleção de Genes , Locomoção/efeitos dos fármacos , Camundongos , Ligação Proteica , Tirosina 3-Mono-Oxigenase/metabolismo
7.
PLoS One ; 7(5): e37673, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22655064

RESUMO

Sprague-Dawley rats can be classified as low or high cocaine responders (LCRs or HCRs, respectively) based on their locomotor activity induced by an acute low dose of cocaine. Upon repeated cocaine exposure, LCRs display greater locomotor sensitization, reward, and reinforcement than HCRs. Altered glutamate receptor expression in the brain reward pathway has been linked to locomotor sensitization and addiction. To determine if such changes contribute to the differential development of locomotor sensitization, we examined protein levels of total, phosphorylated, and cell surface glutamate N-methyl D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors (Rs) following acute or repeated cocaine (10 mg/kg, i.p.) in LCRs, HCRs and saline controls. Three areas involved in the development and expression of locomotor sensitization were investigated: the ventral tegmental area (VTA), nucleus accumbens (NAc) and dorsal striatum (dSTR). Our results revealed differences only in the dSTR, where we found that after acute cocaine, GluN2B(Tyr-1472) phosphorylation was significantly greater in LCRs, compared to HCRs and controls. Additionally in dSTR, after repeated cocaine, we observed significant increases in total GluA1, phosphorylated GluA1(Ser-845), and cell surface GluA1 in all cocaine-treated animals vs. controls. The acute cocaine-induced increases in NMDARs in dSTR of LCRs may help to explain the more ready development of locomotor sensitization and susceptibility to addiction-like behaviors in rats that initially exhibit little or no cocaine-induced activation, whereas the AMPAR increases after repeated cocaine may relate to recruitment of more dorsal striatal circuits and maintenance of the marked cocaine-induced locomotor activation observed in all of the rats.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Corpo Estriado/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
J Pharmacol Exp Ther ; 342(1): 214-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22518023

RESUMO

Cocaine addiction is a significant and complex disease. Part of this complexity is caused by the variability of the drug experience early in drug use (initial responsiveness, amount of use, etc.). In rats, individual differences in initial cocaine responsiveness and cocaine self-administration history both predict the development of cocaine sensitization, a putative mechanism contributing to the development of cocaine addiction. Here, we sought to determine the role of these factors and cocaine dose on the development of sensitization to cocaine's motivational effects during the earliest stages of self-administration. Rats were classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced locomotor activity (10 mg/kg i.p.) before learning to self-administer cocaine (0.6 mg/kg/infusion i.v.) under a fixed ratio 1 (FR1) schedule of reinforcement. After acquisition, rats self-administered cocaine (0.6 or 1.2 mg/kg/infusion) under a progressive ratio (PR) schedule of reinforcement either immediately or after an additional five FR1 sessions (0.6 or 1.2 mg/kg/infusion). No LCR/HCR differences in sensitization were observed. However, regardless of LCR/HCR classification, exposure to the higher dose of cocaine produced sensitization to cocaine's motivational effects on the PR schedule (i.e., increased break points) and an escalation of consumption on the FR schedule. Thus, our results reveal a novel model for studying escalation and sensitization very early after acquisition and suggest that sensitization may be important in the earliest stages of the cocaine addiction process.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/etiologia , Cocaína/administração & dosagem , Motivação/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Individualidade , Masculino , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Reforço Psicológico , Autoadministração/métodos
9.
FASEB J ; 26(5): 1921-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22267337

RESUMO

The plasma membrane dopamine (DA) transporter (DAT) is essential for reuptake of extracellular DA. DAT function in heterologous cells is regulated by subcellular targeting, endocytosis, and intracellular trafficking, but the mechanisms regulating neuronal DAT remain poorly understood. Hence, we generated a knock-in mouse expressing a hemagglutinin (HA)-epitope-tagged DAT to study endogenous transporter trafficking. Introduction of the HA tag into the second extracellular loop of mouse DAT did not perturb its expression level, distribution pattern, or substrate uptake kinetics. Live-cell fluorescence microscopy imaging using fluorescently labeled HA-specific antibody and a quantitative HA-antibody endocytosis assay demonstrated that in axons HA-DAT was primarily located in the plasma membrane and internalized mostly in growth cones and varicosities, where synaptic vesicle markers were also concentrated. Formation of varicosities was frequently preceded or accompanied by highly dynamic filopodia-like membrane protrusions. Remarkably, HA-DAT often concentrated at the tips of these filopodia. This pool of HA-DATs exhibited low lateral membrane mobility. Thus, DAT-containing filopodia may be involved in synaptogenesis in developing DA neurons. Treatment of neurons with amphetamine increased mobility of filopodial HA-DAT and accelerated HA-DAT endocytosis in axons, suggesting that chronic amphetamine may interfere with DA synapse development. Interestingly, phorbol esters did not accelerate endocytosis of axonal DAT.


Assuntos
Axônios , Proteínas da Membrana Plasmática de Transporte de Dopamina/fisiologia , Dopamina/metabolismo , Endocitose , Epitopos/metabolismo , Animais , Sequência de Bases , Primers do DNA , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese
10.
Cell Res ; 22(2): 321-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22105488

RESUMO

Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD). However, a major stumbling block has been the lack of a reliable source of donor DA neurons. Here we show that a combination of five transcriptional factors Mash1, Ngn2, Sox2, Nurr1, and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells. The reprogrammed cells stained positive for various markers for DA neurons. They also showed characteristic DA uptake and production properties. Moreover, they exhibited DA neuron-specific electrophysiological profiles. Finally, they provided symptomatic relief in a rat PD model. Therefore, our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD.


Assuntos
Reprogramação Celular , Neurônios Dopaminérgicos/citologia , Fibroblastos/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/transplante , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/terapia , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Psychopharmacology (Berl) ; 219(4): 1089-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21863236

RESUMO

RATIONALE: We have previously described a model in which adult outbred male Sprague-Dawley rats are classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced open-field activation. This model revealed important individual differences in cocaine's effects, including that LCRs exhibited greater responding than HCRs on a progressive ratio schedule of cocaine reinforcement. However, no LCR/HCR differences in acquisition of cocaine self-administration (0.25 mg/kg/12 s infusion) were observed under these conditions. OBJECTIVES: To determine if LCRs and HCRs differ in the effectiveness of cocaine to function as a reinforcer under a broader range of conditions, the present study assessed the acquisition of cocaine self-administration (fixed ratio 1 schedule of reinforcement) as a function of i.v. cocaine dose (0.1875, 0.375, 0.5, 1, or 1.5 mg/kg/6 s infusion). RESULTS: LCRs and HCRs did not differ significantly on any measure of acquisition examined, including the day to meet acquisition criterion, percent acquired, and cocaine intake. The effect of dose on percent acquired and rate of acquisition peaked at the 1-mg/kg/infusion dose of cocaine. In contrast, the effect of dose on cocaine intake was linear, with the highest rate of intake occurring at the 1.5-mg/kg/infusion dose of cocaine. CONCLUSIONS: LCRs and HCRs do not appear to differ in their acquisition of cocaine-reinforced operant responding across a range of cocaine doses, including conditions that lead to high levels of cocaine intake.


Assuntos
Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Cocaína/administração & dosagem , Relação Dose-Resposta a Droga , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração
12.
Sci Transl Med ; 3(104): 104cm31, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21998405

RESUMO

Academic medical centers (AMCs) are pillars of the community; they provide health care, create jobs, educate biomedical professionals, and engage in research and innovation. To sustain their impact on human health, AMCs must improve the professional satisfaction of their faculty. Here, we describe ways to enhance recruitment, retention, creativity, and productivity of health science faculty.


Assuntos
Docentes de Medicina , Faculdades de Medicina , Universidades , Centros Médicos Acadêmicos , Pesquisa Biomédica , Escolha da Profissão , Eficiência , Humanos , Qualidade de Vida , Pesquisa Translacional Biomédica , Recursos Humanos
13.
Postgrad Med ; 123(5): 39-49, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21904085

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) affects nearly 10% of children in the United States, and the prevalence of this disorder has increased steadily over the past decades. The cause of ADHD is unknown, although recent studies suggest that it may be associated with a disruption in dopamine signaling whereby dopamine D2 receptors are reduced in reward-related brain regions. This same pattern of reduced dopamine-mediated signaling is observed in various reward-deficiency syndromes associated with food or drug addiction, as well as in obesity. While genetic mechanisms are likely contributory to cases of ADHD, the marked frequency of the disorder suggests that other factors are involved in the etiology. In this article, we revisit the hypothesis that excessive sugar intake may have an underlying role in ADHD. We review preclinical and clinical data suggesting overlaps among ADHD, sugar and drug addiction, and obesity. Further, we present the hypothesis that the chronic effects of excessive sugar intake may lead to alterations in mesolimbic dopamine signaling, which could contribute to the symptoms associated with ADHD. We recommend further studies to investigate the possible relationship between chronic sugar intake and ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Sacarose Alimentar/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Encéfalo/metabolismo , Encéfalo/fisiologia , Dopamina/fisiologia , Humanos , Obesidade/complicações , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Dopaminérgicos/fisiologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
J Neurosci ; 31(17): 6605-15, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21525301

RESUMO

The serotonin transporter (SERT) is the principal mechanism for terminating serotonin (5-HT) signals in the nervous system and is a site of action for a variety of psychoactive drugs including antidepressants, amphetamines, and cocaine. Here we show that human SERTs (hSERTs) and rat SERTs are capable of robust dopamine (DA) uptake through a process that differs mechanistically from 5-HT transport in several unanticipated ways. DA transport by hSERT has a higher maximum velocity than 5-HT transport, requires significantly higher Na(+) and Cl(-) concentrations to sustain transport, is inhibited noncompetitively by 5-HT, and is more sensitive to SERT inhibitors, including selective serotonin reuptake inhibitors. We use a thiol-reactive methane thiosulfonate (MTS) reagent to modify a conformationally sensitive cysteine residue to demonstrate that hSERT spends more time in an outward facing conformation when transporting DA than when transporting 5-HT. Cotransfection of an inactive or an MTS-sensitive SERT with wild-type SERT subunits reveals an absence of cooperative interactions between subunits during DA but not 5-HT transport. To establish the physiological relevance of this mechanism for DA clearance, we show using in vivo high-speed chronoamperometry that SERT has the capacity to clear extracellularly applied DA in the hippocampal CA3 region of anesthetized rats. Together, these observations suggest the possibility that SERT serves as a DA transporter in vivo and highlight the idea that there can be distinct modes of transport of alternative physiological substrates by SERT.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Análise de Variância , Animais , Região CA3 Hipocampal/citologia , Células COS , Linhagem Celular Transformada , Chlorocebus aethiops , Citalopram/farmacologia , Cocaína/análogos & derivados , Cocaína/farmacocinética , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Relação Dose-Resposta a Droga , Técnicas Eletroquímicas , Humanos , Masculino , Mutagênese Sítio-Dirigida/métodos , Ensaio Radioligante/métodos , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sódio/metabolismo , Transfecção/métodos , Trítio/metabolismo
15.
Stem Cell Res Ther ; 1(5): 36, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21122109

RESUMO

INTRODUCTION: Regulated neurotransmitter actions in the mammalian central nervous system determine brain function and control peripheral organs and behavior. Although drug-seeking behaviors, including alcohol consumption, depend on central neurotransmission, modification of neurotransmitter actions in specific brain nuclei remains challenging. Herein, we report a novel approach for neurotransmission modification in vivo by transplantation of stem cells engineered to take up the neurotransmitter dopamine (DA) efficiently through the action of the human dopamine transporter (hDAT). As a functional test in mice, we used voluntary alcohol consumption, which is known to release DA in nucleus accumbens (NAC), an event hypothesized to help maintain drug-seeking behavior. We reasoned that reducing extracellular DA levels, by engrafting into NAC DA-sequestering stem cells expressing hDAT, would alter alcohol intake. METHODS: We have generated a neural stem cell line stably expressing the hDAT. Uptake kinetics of DA were determined to select a clone for transplantation. These genetically modified stem cells (or cells transfected with a construct lacking the hDAT sequence) were transplanted bilaterally into the NAC of wild-type mice trained to consume 10% alcohol in a two-bottle free-choice test for alcohol consumption. Alcohol intake was then ascertained for 1 week after transplantation, and brain sections through the NAC were examined for surviving grafted cells. RESULTS: Modified stem cells expressed hDAT and uptaken DA selectively via hDAT. Mice accustomed to drinking 10% ethanol by free choice reduced their alcohol consumption after being transplanted with hDAT-expressing stem cells. By contrast, control stem cells lacked that effect. Histologic examination revealed surviving stem cells in the NAC of all engrafted brains. CONCLUSIONS: Our findings represent proof of principle suggesting that genetically engineered stem cells can be useful for exploring the role of neurotransmitters (or other signaling molecules) in alcohol consumption and potentially in other aspects of brain function.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento de Procura de Droga/fisiologia , Células-Tronco Neurais/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Células Cultivadas , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/transplante , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , beta-Galactosidase/metabolismo
16.
Neurosci Lett ; 476(1): 9-13, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20302913

RESUMO

Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine. Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we classified male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have not been explored. Here we measured open-field activity and plasma corticosterone levels both pre- and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in corticosterone levels were also not observed following acute cocaine (10mg/kg, i.p.), when cocaine induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there were no LCR/HCR differences in plasma corticosterone levels following 5 days of once-daily cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity differences in any of four concentric zones within the open-field chamber. In summary, neither plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to the observed cocaine-induced LCR/HCR behavioral differences.


Assuntos
Cocaína/farmacologia , Corticosterona/sangue , Atividade Motora/efeitos dos fármacos , Animais , Ansiedade/psicologia , Masculino , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Estresse Psicológico/psicologia
17.
Neuropharmacology ; 58(3): 605-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19951714

RESUMO

Adult outbred Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively). Importantly, LCRs and HCRs are distinguished by their differential responsiveness to acute cocaine-induced (but not baseline) locomotor activity, inhibition of the dopamine transporter (DAT) and resulting extracellular DA (HCR > LCR), as well as by repeated cocaine-induced locomotor sensitization and measures of cocaine's rewarding and reinforcing effects (LCR > HCR). Curiously, 30 min after acute cocaine HCRs exhibit greater DAT-mediated [(3)H]DA uptake into striatal synaptosomes than LCRs. To investigate this finding further, we measured locomotor activity, striatal [(3)H]DA uptake kinetics and DAT cell surface expression in LCRs and HCRs over an extended period (25-180 min) after a single relatively low-dose of cocaine (10 mg/kg, i.p.). HCRs exhibited the "predicted" locomotor response: a marked initial activation that returned to baseline by 120 min post-injection. While LCRs exhibited a >50% lower maximal locomotor response, this increase was sustained, lasting approximately 33% longer than in HCRs. At 25 min post-cocaine, maximal velocity (V(max)) of [(3)H]DA uptake was significantly higher by 25% in HCRs than LCRs, with no difference in affinity (K(m)). Despite the DAT V(max) difference, however, DAT surface expression did not differ between LCRs and HCRs. There was a similar trend (HCR > LCR) for DAT V(max) at 40 min, but not at 150 or 180 min. These findings suggest that, compared to LCRs, HCRs have an enhanced ability to rapidly up-regulate DAT function in response to acute cocaine, which may contribute to their more "normal" cocaine-induced locomotor activation.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Animais , Biotinilação/métodos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Trítio/metabolismo
18.
J Pharmacol Exp Ther ; 331(3): 985-97, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19729579

RESUMO

Both humans and animals exhibit marked individual differences in cocaine responsiveness. By using the median split of cocaine-induced locomotor activity, we have classified outbred male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively). LCR/HCR classification predicts differences in cocaine inhibition of striatal dopamine (DA) transporters (DATs), cocaine-induced locomotor sensitization, cocaine-conditioned place preference, and motivation to self-administer cocaine. In this study, we used in vivo microdialysis to investigate whether the differential cocaine inhibition of DATs in LCRs and HCRs is translated into differential extracellular DA levels. Paralleling their locomotor profiles, LCRs and HCRS had similar basal extracellular DA levels in dorsal striatum (dSTR) and nucleus accumbens (NAc); after acute cocaine injection (10 mg/kg i.p.), HCRs showed greater cocaine-induced increases in DA than LCRs, with more pronounced differences in NAc. After repeated cocaine injection, LCRs and HCRs no longer differed in cocaine-induced locomotor activity or extracellular DA. To further explore the differential susceptibility of LCR/HCR DATs to cocaine, we used in vitro [(3)H]2-carbomethoxy-3-(4-fluorophenyl)tropane ([(3)H]WIN 35,428) binding and quantitative autoradiography to measure the number of DAT binding sites and cocaine's affinity for them. After acute cocaine administration, HCRs had fewer DAT binding sites in dSTR and NAc shell, compared to LCRs. No LCR/HCR differences were observed in DAT number after repeated cocaine injection or in cocaine's affinity. Our findings suggest that levels of striatal extracellular DA and DATs both make important contributions to initial differences in cocaine activation, which in LCRs/HCRs predict differential cocaine reward and reinforcement.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/efeitos adversos , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Espaço Extracelular/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Atividade Motora/efeitos dos fármacos , Ligação Proteica , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Recompensa
19.
Mol Pharmacol ; 76(4): 812-23, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19628755

RESUMO

Cyclin-dependent kinase (Cdk) 5 reduces the rewarding properties of psychostimulants by dampening postsynaptic dopamine (DA) receptor signaling. Cdk5 is also present in midbrain DA neurons, where the DA transporter (DAT) is localized and limits DA neurotransmission by removing extracellular DA. Here, we tested the hypothesis that Cdk5 could also affect the disposition of DA by regulating DAT activity. Incubation of rat dorsal striatal (dSTR) synaptosomes with the Cdk5 inhibitors roscovitine, olomoucine, and 4-{[(7-oxo-6,7-dihydro-8H-[1,3]thiazolo[5,4-e]indol-8-ylidene)methyl]amino}-N-(2-pyridyl)benzenesulfonamide (GW8510) or the inactive congener iso-olomoucine resulted in a rapid, concentration-dependent inhibition of specific [3H]DA uptake. However, roscovitine was the only inhibitor that did not also decrease [3H]2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (WIN35,428) binding to dSTR DATs. Roscovitine-induced inhibition of dSTR [3H]DA uptake was explained by decreased maximal uptake velocity, without a change in cell-surface DAT levels. Roscovitine did not enhance [3H]DA release mediated by either DAT reverse-transport or Ca(2+) channels in dSTR slices. Instead, roscovitine enhanced spontaneous [3H]DA outflow and inhibited DAT-mediated [3H]DA reaccumulation into dSTR slices. To explore the involvement of Cdk5 in roscovitine-induced down-regulation of DAT activity, Cdk5 protein was knocked down via Cdk5-small interfering RNA by as much as 86% in porcine aortic endothelial cells stably expressing human (h)DATs. However, Cdk5 depletion did not alter hDAT activity. Taken together, our results suggest that roscovitine inhibits DAT activity independently of Cdk5; therefore, results obtained with such inhibitors should be interpreted with caution. Our study is the first to demonstrate that Cdk5 inhibitors reduce brain DAT activity via a mechanism that is independent of DAT trafficking and reverse-transport.


Assuntos
Cocaína/análogos & derivados , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Endocitose , Humanos , Masculino , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Roscovitina , Suínos , Sinaptossomos/metabolismo
20.
Semin Cell Dev Biol ; 20(4): 411-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19560046

RESUMO

Brain dopamine (DA) plays a pivotal role in drug addiction. Since the plasma membrane DA transporter (DAT) is critical for terminating DA neurotransmission, it is important to understand how DATs are regulated and this regulation impacts drug addiction. The number of cell surface DATs is controlled by constitutive and regulated endocytic trafficking. Psychostimulants impact this trafficking. Amphetamines, DAT substrates, cause rapid up-regulation and slower down-regulation of DAT whereas cocaine, a DAT inhibitor, increases surface DATs. Recent reports have begun to elucidate the molecular mechanisms of these psychostimulant effects and link changes in DAT trafficking to psychostimulant-induced reward/reinforcement in animal models.


Assuntos
Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtornos Relacionados ao Uso de Substâncias , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Transporte Proteico , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA