Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 8(11): e11459, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387437

RESUMO

Cu-doped MnO2 with the composition of Mn1-xCuxO2 (x = 0-0.15) was synthesized and characterized. The synthesis was carried out by hydrothermal method at 140 °C for 5 h of reaction dwell time. The characterizations include X-Ray Diffraction (XRD), Microscopy, X-ray Absorption Spectroscopy (XAS), and Impedance complex analysis. It was revealed that all samples have nanorod morphology. Their size increases with the increasing dopant. Additionally, K ions are detected by EDX. All samples pose α-MnO2 type structures performing (2 × 2) and (1 × 1) tunnels permitting large ions incorporated and oxygen deficiency. The octahedron was distorted to elongate up to x = 0.10, then compressed for x = 0.15, inducing the Jan Teller effect. Oxidation state analysis revealed that the manganese has Mn3+ and Mn4+, while the copper is mainly attributed to Cu2+ and Cu3+ respectively. The small ionic size and highly oxidized Cu3+ substitute Mn4+, while Cu2+ substitutes Mn3+ or simultaneously with the larger K+ incorporated in the tunnel. Accordingly, the defects to exist in the sample, namely C u M n ' , M n M n ' , V O • • , and e ' . Electrical characterization at room temperature revealed that the conductivity of Cu-doped MnO2 is dominated by electrons influenced by the various oxidation state of the cations in the octahedron sites, while space charges dominate the dielectric response.

2.
RSC Adv ; 11(14): 7808-7823, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35423298

RESUMO

The composition of Mn1-x Fe x O2 (x = 0-0.15) was synthesized by a hydrothermal method at 140 °C for 5 hours of reaction time. Investigations were carried out including XRD, FTIR, Raman spectroscopy, FESEM, and TEM for crystallographic phase analysis. Furthermore, XPS and XAS were used to analyze the oxidation states of Mn and dopant Fe in the octahedron sites. For electrical characterizations, an impedance analyzer was used to explore the conductivity and dielectric properties. It was discovered that the undoped MnO2 possessed an α-MnO2 structure performing (2 × 2) tunnel permitting K+ insertion and had a nanorod morphology. The Fe ion that was doped into MnO2 caused a phase transformation from α-MnO2 to Ramsdellite R-MnO2 after x = 0.15 was reached and the tunnel dimension changed to (2 × 1). Furthermore, this caused increased micro-strain and oxygen vacancies. An oxidation state analysis of Mn and substituted Fe in the octahedron sites found mixed 3+ and 4+ states. Electrical characterization revealed that the conductivity of Fe-doped MnO2 is potentially electron influenced by the oxidation state of the cations in the octahedron sites, the micro-strain, the dislocation density, and the movement of K+ ions in the tunnel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA