Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bio Protoc ; 13(14): e4719, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37497445

RESUMO

The sesquiterpene lactone compound artemisinin is a natural medicinal product of commercial importance. This Artemisia annua-derived secondary metabolite is well known for its antimalarial activity and has been studied in several other biological assays. However, the major shortcoming in its production and commercialization is its low accumulation in the native plant. Moreover, the chemical synthesis of artemisinin is difficult and expensive due to its complex structure. Hence, an alternative and sustainable production system of artemisinin in a heterologous host is required. Previously, heterologous production of artemisinin was achieved by Agrobacterium-mediated transformation. However, this requires extensive bioengineering of modified Nicotiana plants. Recently, a technique involving direct in vivo assembly of multiple DNA fragments in the moss, P. patens, has been successfully established. We utilized this technique to engineer artemisinin biosynthetic pathway genes into the moss, and artemisinin was obtained without further modifications with high initial production. Here, we provide protocols for establishing moss culture accumulating artemisinin, including culture preparation, transformation method, and compound detection via HS-SPME, UPLC-MRM-MS, and LC-QTOF-MS. The bioengineering of moss opens up a more sustainable, cost effective, and scalable platform not only in artemisinin production but also other high-value specialized metabolites in the future.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 396(3): 405-420, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36399185

RESUMO

Medicinal plants have a long track record of use in history, and one of them is Commiphora myrrh which is commonly found in the southern part of Arabia, the northeastern part of Africa, in Somalia, and Kenya. Relevant literatures were accessed via Google Scholar, PubMed, Scopus, and Web of Science to give updated information on the phytochemical constituents and pharmacological action of Commiphora myrrh. It has been used traditionally for treating wounds, mouth ulcers, aches, fractures, stomach disorders, microbial infections, and inflammatory diseases. It is used as an antiseptic, astringent, anthelmintic, carminative, emmenagogue, and as an expectorant. Phytochemical studies have shown that it contains terpenoids (monoterpenoids, sesquiterpenoids, and volatile/essential oil), diterpenoids, triterpenoids, and steroids. Its essential oil has applications in cosmetics, aromatherapy, and perfumery. Research has shown that it exerts various biological activities such as anti-inflammatory, antioxidant, anti-microbial, neuroprotective, anti-diabetic, anti-cancer, analgesic, anti-parasitic, and recently, it was found to work against respiratory infections like COVID-19. With the advancement in drug development, hopefully, its rich phytochemical components can be explored for drug development as an insecticide due to its great anti-parasitic activity. Also, its interactions with drugs can be fully elucidated.This review highlights an updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Commiphora myrrh. Graphical summary of the phytochemical and pharmacological update of Commiphora myrrh.


Assuntos
COVID-19 , Óleos Voláteis , Humanos , Commiphora , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Fitoterapia
3.
Adv Pharmacol Pharm Sci ; 2022: 4495688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677711

RESUMO

Medicinal plants are the primary raw materials used in the production of medicinal products all over the world. As a result, more study on plants with therapeutic potential is required. The tropical tree Ziziphus spina belongs to the Rhamnaceae family. Biological reports and traditional applications including management of diabetes and treatment of malaria, digestive issues, typhoid, liver complaints, weakness, skin infections, urinary disorders, obesity, diarrhoea, and sleeplessness have all been treated with different parts of Z. spina all over the globe. The plant is identified as a rich source of diverse chemical compounds. This study is a comprehensive yet detailed review of Z. spina based on major findings from around the world regarding ethnopharmacology, biological evaluation, and chemical composition. Scopus, Web of Science, BioMed Central, ScienceDirect, PubMed, Springer Link, and Google Scholar were searched to find published articles. From the 186 research articles reviewed, we revealed the leaf extract to be significant against free radicals, microbes, parasites, inflammation-related cases, obesity, and cancer. Chemically, polyphenols/flavonoids were the most reported compounds with a composition of 66 compounds out of the total 193 compounds reported from different parts of the plant. However, the safety and efficacy of Z. spina have not been wholly assessed in humans, and further well-designed clinical trials are needed to corroborate preclinical findings. The mechanism of action of the leaf extract should be examined. The standard dose and safety of the leaf should be established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA