Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(5): e14512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221518

RESUMO

Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.


Assuntos
Líquens , Transcriptoma , Raios Ultravioleta , Líquens/fisiologia , Líquens/efeitos da radiação , Líquens/genética , Líquens/metabolismo , Melaninas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação
2.
PeerJ ; 9: e11821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327064

RESUMO

BACKGROUND: Invasive species are one of the key elements of human-mediated ecosystem degradation and ecosystem services impairment worldwide. Dispersal of propagules is the first stage of plant species spread and strongly influences the dynamics of biological invasion. Therefore, distance prediction for invasive species spread is critical for invasion management. Heracleum sosnowskyi is one of the most dangerous invasive species with wind-dispersed propagules (seeds) across Eastern Europe. This study developed a simple mechanistic model for H. sosnowskyi propagule dispersal and their distances with an accuracy comparable to that of empirical measurements. METHODS: We measured and compared the propagule traits (terminal velocity, mass, area, and wing loading) and release height for H. sosnowskyi populations from two geographically distant regions of European Russia. We tested two simple mechanistic models: a ballistic model and a wind gradient model using identical artificial propagules. The artificial propagules were made of colored paper with a mass, area, wing loading, and terminal velocity close to those of natural H. sosnowskyi mericarps. RESULTS: The wind gradient model produced the best results. The first calculations of maximum possible propagule transfer distance by wind using the model and data from weather stations showed that the role of wind as a vector of long-distance dispersal for invasive Heracleum species was strongly underestimated. The published dataset with H. sosnowskyi propagule traits and release heights allows for modeling of the propagules' dispersal distances by wind at any geographical point within their entire invasion range using data from the closest weather stations. The proposed simple model for the prediction of H. sosnowskyi propagule dispersal by wind may be included in planning processes for managing invasion of this species.

3.
PhytoKeys ; (77): 71-80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814921

RESUMO

Occurrences of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (northeastern part of European Russia) were recorded and published in the Global Biodiversity Information Facility (GBIF http://www.gbif.org) using the RIVR information system (http://ib.komisc.ru/add/rivr/en). RIVR stands for "Rasprostranenie Invasionnyh Vidov Rastenij" [Occurrence of Invasion Plant Species]. This citizen science project aims at collecting occurrence data about invasive plant species with the help of citizen scientists. Information can be added by any user after a simple registration (concept) process. However, the data published in GBIF are provided only by professional scientists. The total study area is approximately 19,000 km2. The GBIF resource contains 10894 Heracleum sosnowskyi occurrence points, each with their geographical coordinates and photographs of the plants in the locus of growth. The preliminary results of species distribution modelling on the territory of European North-East Russia presented.

4.
Plant Physiol Biochem ; 118: 385-393, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710946

RESUMO

Structural and functional parameters and redox homeostasis in leaves of Artemisia santonica L. under environment conditions of Elton lake (the southeast region of the European part of Russia) were measured. The highest photosynthetic apparatus (PA) activity in A. santonica leaves on CO2 gas exchange as well as the highest content of green pigments was observed in the morning. Maximum share of violaxanthin cycle key pigments - zeaxanthin (Zx) and antheraxanthin (Ax) was observed in the afternoon and decreased in the evening. Lipids/chlorophyll (Chl) ratio increased in the evening due to the decrease in Chl concentration, and content of linolenic acid (С18:3n3) was decreased in the middle of the day. The content of TBA-reacting products increased 1.4-fold in the middle of the day, and decreased approximately 2-fold in the evening. The decrease of the activity was observed in diurnal dynamics of superoxide dismutase (SOD) and polyphenol oxidase (PPO). Increased accumulation of phenols and flavonoids, as well as free amino acids (FAA) in A. santonica leaves was observed in the middle of the day. Thus, the ability of A. santonica plants to resist the soil salinization, high levels of solar illumination and temperature consists of a number of protectively-adaptive reactions of metabolic and photosynthetic control.


Assuntos
Artemisia/metabolismo , Homeostase/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Oxirredução
5.
PLoS One ; 10(11): e0142833, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565793

RESUMO

The ability of giant hogweeds to form monodominant communities and even pure monostands in invaded areas has been well documented. Understanding of the mechanisms leading to monostand formation can aid in determining the limitations of existing community ecology models and establishing an effective management plan for invasive species elimination. The aim of this observational study was to investigate traits of Heracleum sosnowskyi plants (demography, canopy structure, morphology and physiology) of the plants in a pure stand in an invaded area useful for understanding potential monostand formation mechanisms. All measurements were performed in one typical Heracleum sosnowskyi monostand located in an abandoned agriculture field located in Syktyvkar city suburb (North-east Russia). This monostand consisted of five main plant growth stages: seed, seedling, juvenile, vegetative adult, and generative adult. Plants of all stages began to grow simultaneously shortly after the snowmelt, at the same time as spring ephemeral plant species grew. The density of generative plants did not change during the vegetation period, but the density of the other plant stages rapidly decreased after the formation of a tall (up to 2-2.5 m) and dense (Leaf area index up to 6.5) canopy. The canopy captured approximately 97% of the light. H. sosnowskyi showed high (several orders of magnitude higher than average taiga zone grasses) photosynthetic water use efficiency (6-7 µM CO2/µM H2O). Formation of H. sosnowskyi monostands occurs primarily in disturbed areas with relatively rich and well-moistened soils. Early commencement of growth, rapid formation of a dense canopy, high efficiency of light and water use during photosynthesis, ability of young plants to survive in low light conditions, rapid recovery of above-ground plant parts after damage, and the high density of the soil seed bank are the most important traits of H. sosnowskyi plants for monostand formation in invaded areas.


Assuntos
Heracleum/fisiologia , Espécies Introduzidas , Folhas de Planta/fisiologia , Agricultura/métodos , Dióxido de Carbono/química , Clorofila/química , Clima , Ecossistema , Meio Ambiente , Luz , Nitrogênio , Fenótipo , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal , Federação Russa , Plântula/crescimento & desenvolvimento , Sementes , Solo
6.
Acta Biochim Pol ; 59(1): 145-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428139

RESUMO

The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.


Assuntos
Carotenoides/metabolismo , Fotossíntese/fisiologia , Plantago/metabolismo , Luz , Plantago/efeitos da radiação , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA