RESUMO
We introduce an ultrahigh-resolution (50µm) robotic micro-CT design for localized imaging of carotid plaques using robotic arms, cutting-edge detector, and machine learning technologies. To combat geometric error-induced artifacts in interior CT scans, we propose a data-driven geometry estimation method that maximizes the consistency between projection data and the reprojection counterparts of a reconstructed volume. Particularly, we use a normalized cross correlation metric to overcome the projection truncation effect. Our approach is validated on a robotic CT scan of a sacrificed mouse and a micro-CT phantom scan, both producing sharper images with finer details than that prior correction.
RESUMO
Objective. High energy and large field of view (FOV) phase contrast imaging is crucial for biological and even medical applications. Although some works have devoted to achieving a large FOV at high energy through bending gratings and so on, which would be extremely challenging in medical high energy imaging.Approach.We analyze the angular shadowing effect of planar gratings in high-energy x-ray Talbot-Lau interferometer (XTLI). Then we design and develop an inverse XTLI coupled with a microarray anode-structured target source to extend the FOV at high energy.Main results.Our experimental results demonstrate the benefit of the source in the inverse XTLI and a large FOV of 106.6 mm in the horizontal direction is achieved at 40 keV. Based on this system, experiments of a mouse demonstrate the potential advantage of phase contrast mode in imaging lung tissue.Significance.We extend the FOV in a compact XTLI using a microarray anode-structured target source coupled with an inverse geometry, which eliminates grating G0 and relaxes the fabrication difficulty of G2. We believe the established design idea and imaging system would facilitate the wide applications of XTLI in high energy phase contrast imaging.
Assuntos
Interferometria , Pulmão , Animais , Camundongos , Raios X , Interferometria/métodos , Radiografia , EletrodosRESUMO
X-ray grating interferometry (XGI) can provide multiple image modalities. It does so by utilizing three different contrast mechanisms-attenuation, refraction (differential phase-shift), and scattering (dark-field)-in a single dataset. Combining all three imaging modalities could create new opportunities for the characterization of material structure features that conventional attenuation-based methods are unable probe. In this study, we proposed an image fusion scheme based on the non-subsampled contourlet transform and spiking cortical model (NSCT-SCM) to combine the tri-contrast images retrieved from XGI. It incorporated three main steps: (i) image denoising based on Wiener filtering, (ii) the NSCT-SCM tri-contrast fusion algorithm, and (iii) image enhancement using contrast-limited adaptive histogram equalization, adaptive sharpening, and gamma correction. The tri-contrast images of the frog toes were used to validate the proposed approach. Moreover, the proposed method was compared with three other image fusion methods by several figures of merit. The experimental evaluation results highlighted the efficiency and robustness of the proposed scheme, with less noise, higher contrast, more information, and better details.
RESUMO
The high interfacial resistance and lithium (Li) dendrite growth are two major challenges for solid-state Li batteries (SSLBs). The lack of understanding on the correlations between electronic conductivity and Li dendrite formation limits the success of SSLBs. Here, by diluting the electronic conductor from the interphase to bulk Li during annealing of the aluminium nitride (AlN) interlayer, we changed the interphase from mixed ionic/electronic conductive to solely ionic conductive, and from lithiophilic to lithiophobic to fundamentally understand the correlation among electronic conductivity, Li dendrite, and interfacial resistance. During the conversion-alloy reaction between AlN and Li, the lithiophilic and electronic conductive LixAl diffused into Li, forming a compact lithiophobic and ionic conductive Li3N, which achieved an ultrahigh critical current density of 2.6/14.0 mA/cm2 in the time/capacity-constant mode, respectively. The fundamental understanding on the effect of interphase nature on interfacial resistance and Li dendrite suppression will provide guidelines for designing high-performance SSLBs.
RESUMO
Lithium-ion battery (LIB) is a broadly adopted technology for energy storage. With increasing demands to improve the rate capability, cyclability, energy density, safety, and cost efficiency, it is crucial to establish an in-depth understanding of the detailed structural evolution and cell-degradation mechanisms during battery operation. Here, we present a laboratory-based high-resolution and high-throughput X-ray micro-computed laminography approach, which is capable of in situ visualizing of an industry-relevant lithium-ion (Li-ion) pouch cell with superior detection fidelity, resolution, and reliability. This technique enables imaging of the pouch cell at a spatial resolution of 0.5 µm in a laboratory system and permits the identification of submicron features within cathode and anode electrodes. We also demonstrate direct visualization of the lithium plating in the imaged pouch cell, which is an important phenomenon relevant to battery fast charging and low-temperature cycling. Our development presents an avenue toward a thorough understanding of the correlation among multiscale structures, chemomechanical degradation, and electrochemical behavior of industry-scale battery pouch cells.
RESUMO
Multicontrast X-ray imaging with high resolution and sensitivity using Talbot-Lau interferometry (TLI) offers unique imaging capabilities that are important to a wide range of applications, including the study of morphological features with different physical properties in biological specimens. The conventional X-ray TLI approach relies on an absorption grating to create an array of micrometer-sized X-ray sources, posing numerous limitations, including technical challenges associated with grating fabrication for high-energy operations. We overcome these limitations by developing a TLI system with a microarray anode-structured target (MAAST) source. The MAAST features an array of precisely controlled microstructured metal inserts embedded in a diamond substrate. Using this TLI system, tomography of a Drum fish tooth with high resolution and tri-contrast (absorption, phase, and scattering) reveals useful complementary structural information that is inaccessible otherwise. The results highlight the exceptional capability of high-resolution multicontrast X-ray tomography empowered by the MAAST-based TLI method in biomedical applications.
Assuntos
Tomografia Computadorizada por Raios X , Animais , Análise de Dados , Eletrodos , Peixes/anatomia & histologia , Imageamento Tridimensional , Interferometria , Iluminação , Dente/anatomia & histologia , Dente/diagnóstico por imagemRESUMO
Uneven lithium plating/stripping is an essential issue that inhibits stable cycling of a lithium metal anode and thus hinders its practical applications. The investigation of this process is challenging because it is difficult to observe lithium in an operating device. Here, we demonstrate that the microscopic lithium plating behavior can be observed in situ in a close-to-practical cell setup using X-ray computed tomography. The results reveal the formation of porous structure and its progressive evolution in space over the charging process with a large current. The elaborated analysis indicates that the microstructure of deposited lithium makes a significant impact on the subsequent lithium plating, and the impact of structural inhomogeneity, further exaggerated by the large-current charging, can lead to severely uneven lithium plating and eventually cell failure. Therefore, a codesign strategy involving delicate controls of microstructure and electrochemical conditions could be a necessity for the next-generation battery with lithium metal anode.
Assuntos
Lítio , Tomografia Computadorizada por Raios X , Fontes de Energia Elétrica , Íons , MetaisRESUMO
Talbot-Lau interferometry (TLI) provides additional contrast modes for x-ray imaging that are complementary to conventional absorption radiography. TLI is particularly interesting because it is one of the few practical methods for realizing phase contrast with x-rays that is compatible with large-spot high power x-ray sources. A novel micro array anode structured target (MAAST) x-ray source offers several advantages for TLI over the conventional combination of an extended x-ray source coupled with an absorption grating including higher flux and larger field of view, and these advantages become more pronounced for x-ray energies in excess of 30 keV. A Monte Carlo simulation was performed to determine the optimal parameters for a MAAST source for use with TLI. It was found that the both spatial distribution of x-ray production and the number of x-ray produced in the MAAST have a strong dependence on the incidence angle of the electron beam.
Assuntos
Eletrodos , Processamento de Imagem Assistida por Computador/métodos , Interferometria/instrumentação , Interferometria/métodos , Radiografia/métodos , Humanos , Modelos Teóricos , Método de Monte Carlo , Raios XRESUMO
Talbot-Lau grating interferometer (TLGI) has great advantages in x-ray imaging contrasts, especially for low-Z materials, over conventional absorption contrast. A microstructured array anode target (MAAT) source offers significantly higher imaging throughput than the combination of an extended x-ray source paired with an absorption grating (also known as source grating). The performance of the MAAT source can be optimized with respect to the areal density, dimensions, and choice of material for the microstructured metal inserts (MMI) and the substrate in which they are embedded. In this paper, we analyze the x-ray generation efficiency per incident electron, relative fraction of x-rays generated by MMI and substrate, x-ray spectrum, and angular distribution via Monte Carlo simulation. Based on the simulation results, the optimal parameters are obtained for a MAAT with incident electron energies from 30 keV to 120 keV. The corresponding temperature distribution within the MAAT is also simulated for the optimal set of the parameters via finite element analysis. As demonstrated by the thermal analysis data, the maximum allowable electron-beam power loading was derived that allows a stable operation of the transmission MAAT.
Assuntos
Interferometria/instrumentação , Interferometria/normas , Modelos Teóricos , Imagem Molecular/métodos , Método de Monte Carlo , Difração de Raios X/instrumentação , Simulação por Computador , Eletrodos , Desenho de Equipamento , Interferometria/métodosRESUMO
Body composition measurement is of cardinal significance for medical and clinical applications. Currently, the dual-energy X-ray absorptiometry (DEXA) technique is widely applied for this measurement. In this study, we present a novel measurement method using the absorption and phase information obtained simultaneously from the X-ray grating-based interferometer (XGI). Rather than requiring two projection data sets with different X-ray energy spectra, with the proposed method, both the areal densities of the bone and the surrounding soft tissue can be acquired utilizing one projection data set. By using a human body phantom constructed to validate the proposed method, experimental results have shown that the compositions can be calculated with an improved accuracy comparing to the dual energy method, especially for the soft tissue measurement. Since the proposed method can be easily implemented on current XGI setup, it will greatly extend the applications of the XGI, and meanwhile has the potential to be an alternative to DEXA for human body composition measurement.
Assuntos
Composição Corporal , Radiografia/métodos , Absorciometria de Fóton , Calibragem , Humanos , Interferometria/instrumentação , Interferometria/métodos , Modelos Teóricos , Imagens de Fantasmas , Polimetil Metacrilato , Radiografia/instrumentaçãoRESUMO
Grating-based X-ray differential phase-contrast imaging has attracted a great amount of attention and has been considered as a potential imaging method in clinical medicine because of its compatibility with the traditional X-ray tube source and the possibility of a large field of view. Moreover, phase-contrast computed tomography provides three-dimensional phase-contrast visualization. Generally, two-dimensional information retrieval performed on every projection is required prior to three-dimensional reconstruction in phase-contrast computed tomography. In this paper, a three-dimensional information retrieval method to separate absorption and phase information directly from two reconstructed images is derived. Theoretical derivations together with numerical simulations have been performed to confirm the feasibility and veracity of the proposed method. The advantages and limitations compared with the reverse projection method are also discussed. Owing to the reduced data size and the absence of a logarithm operation, the computational time for information retrieval is shortened by the proposed method. In addition, the hybrid three-dimensional images of absorption and phase information were reconstructed using an absorption reconstruction algorithm, hence the existing data pre-processing methods and iterative reconstruction algorithms in absorption reconstruction may be utilized in phase reconstruction immediately.