Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 246: 125706, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884227

RESUMO

Zinc (Zn) is naturally present in soils and constitutes an essential micronutrient for plants. Mining, industrial, as well as various agricultural activities all contribute to increasing the Zn concentrations in soils to levels that are toxic for plants. The aim of this study was to evaluate the capacity of field crops to remove Zn from contaminated soils. The experimental design included 28 treatments, comprising seven field crops (Hordeum vulgare L., Ricinus communis L., Phaseolus vulgaris L., Brassica juncea Czem., Sorgum vulgare L., Spinacea oleracea L., Solanum lycopersicum L.) and four Zn levels (0, 500, 1000, 1500 mg kg-1) applied to soils. The dry weight (DW) of the aboveground biomass of R. communis and S. lycopersicum increased significantly as the Zn concentration in the soil increased, whereas the DW significantly decreased in P. vulgaris, B. juncea and S. vulgare. Results indicated that S. oleracea was the most efficient in concentrating Zn in the aboveground tissues, followed in decreasing order by H. vulgare, S. lycopersicum, R. communis, S. vulgare, P. vulgaris, and B. juncea. H. vulgare resulted the most efficient in accumulating Zn both in fruit and in leaves and stems, whereas S. lycopersicum resulted the most efficient in accumulating Zn in roots. The BAF and TF values indicated that H. vulgare and S. oleracea resulted being suitable for Zn phytoextraction, whereas the remaining crops being suitable for Zn phytostabilization. These results highlight the phytoremediation potential of the seven analysed crops.


Assuntos
Biodegradação Ambiental , Produtos Agrícolas , Poluentes do Solo/análise , Zinco/análise , Biomassa , Hordeum , Metais Pesados/análise , Mineração , Mostardeira , Raízes de Plantas/química , Solo , Spinacia oleracea , Oligoelementos/análise
2.
Chemosphere ; 219: 122-129, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537585

RESUMO

Copper (Cu) is among the main contaminant of agricultural soil. The reclamation of Cu polluted soils can be achieved with phytoextraction even if, in general, plants are Cu-excluders and uncommon are Cu-accumulators. The research objectives were to establish the Cu removal capacity by arable and vegetable crops and to investigate the distribution of Cu in their roots, stems and leaves, and fruits. Pot trials were conducted for two subsequent years in Tuscany (Italy). Cu was added into soil in four levels (0, 200, 400, 600 mg kg-1 of Cu). At harvesting, the crops roots, stems and leaves, and fruits or seeds were separately collected, oven dried, weighted, milled and separately analyzed. The results show that the GDUs value to reach the physiological maturity for barley, common bean, Indian mustard, and ricinus was significantly positively correlated with Cu concentration in soil in contrast with observed in sorghum, spinach, and tomato. Leaves and stems of spinach and ricinus have a good storage capacity in contrast with common bean, tomato, Indian mustard sorghum and barley. Tomato storage Cu mainly in fruits and roots which show a remarkable concentration of Cu that increases progressively with the increase of Cu concentration in the soil. In addition, the roots of common bean and ricinus showed a very high concentration of Cu. All species can be considered Cu-excluders because of their low capacity to uptake high quantity of Cu. Indian mustard can be considered a plant able to translocate the metal from root to epigeal tissue.


Assuntos
Cobre/química , Poluentes do Solo/química , Verduras/química , Produtos Agrícolas , Solo
3.
J Environ Qual ; 45(5): 1713-1721, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695744

RESUMO

Worldwide, glyphosate is the most widely used herbicide in controlling the growth of annual and perennial weeds. An increasing number of studies have highlighted the environmental risk resulting from the use of this molecule in aquatic and terrestrial ecosystems. The objective of the study was to determine the transport of glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), through runoff and transported sediment from a vineyard under two different soil management systems: harrowed inter-row (HR) and permanent grass covered inter-row (GR). The study was performed over a period of 4 yr. Glyphosate and AMPA concentrations were found to be higher in runoff and in transported sediment from HR compared with GR, regardless of the amount of runoff and transported sediment. The mean annual percentages of glyphosate loss, via runoff and transported sediment, were about 1.37 and 0.73% for HR and GR, respectively. Aminomethylphosphonic acid represented approximately 30.9 and 40.0% of the total glyphosate losses in GR and HR, respectively. Moreover, results suggested that rains occurring within 4 wk after treatment could cause the transport of glyphosate and AMPA in high concentrations. Soil analyses indicated that glyphosate content was below detection within 1 yr, whereas AMPA remained in the soil profiles along the vine row and in the inter-row. Results indicated that GR can reduce soil and herbicide loss by runoff in vineyard cropping system.


Assuntos
Glicina/análogos & derivados , Herbicidas/análise , Isoxazóis/análise , Poluentes do Solo/análise , Tetrazóis/análise , Fazendas , Glicina/análise , Solo , Glifosato
4.
J Environ Qual ; 44(5): 1667-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26436283

RESUMO

Glyphosate [-(phosphono-methyl)-glycine] is the main herbicide used in the Chianti vineyards. Considering the pollution risk of the water table and that the vineyard tile drain may deliver this pollutant into nearby streams, the objective of the present study was to estimate the leaching losses of glyphosate under natural rainfall conditions in a silty clay soil in the Chianti area. The leaching of glyphosate and its metabolite (aminomethylphosphonic acid [AMPA]) through soils was studied in 1-m-deep soil columns under outdoor conditions over a 3-yr period. Glyphosate was detected in the leachates for up to 26 d after treatments at concentrations ranging between 0.5 and 13.5 µg L. The final peak (0.28 µg L) appeared in the leachates approximately 319 d after the first annual treatment. Aminomethylphosphonic acid first appeared (21.3 µg L) in the soil leachate 6.8 d after the first annual treatment. Aminomethylphosphonic acid detection frequency and measured concentration in the leachates were more than that observed for the glyphosate. Aminomethylphosphonic acid was detected in 20% of the soil leachates at concentrations ranging from 1 to 24.9 µg L. No extractable glyphosate was detected in the soil profile. However, the AMPA content in the lowest layer ranged from 13.4 to 21.1 mg kg, and on the surface layer, it ranged from 86.7 to 94 mg kg. Overall, these results indicate that both glyphosate and AMPA leaching through a 1-m soil column may be potential groundwater contaminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA