Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(3): 1307-1319, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36744996

RESUMO

Biomass carbon dots (CDs) derived from natural plants possess the advantages of low cost, photostability, and excellent biocompatibility, with potential applications in chemical sensing, bioimaging, and nanomedicine. However, the development of biomass CDs with excellent antioxidant activity and good biocompatibility is still a challenge. Herein, we propose a hypothesis for enhancing the antioxidant capacity of biomass CDs based on precursor optimization, extraction solvent, and other conditions with broccoli as the biomass. Compared to broccoli water extracts, broccoli powders, and broccoli organic solvent extracts, CDs derived from broccoli water extracts (BWE-CDs) have outstanding antioxidant properties due to the abundant C═C, carbonyl, and amino groups on their surface. After optimization of the preparation condition, the obtained BWE-CDs exhibit excellent free-radical scavenging activity with an EC50 of 68.2 µg/mL for DPPH• and 22.4 µg/mL for ABTS•+. Cytotoxicity and zebrafish embryotoxicity results indicated that BWE-CDs have lower cytotoxicity and better biocompatibility than that of CDs derived from organic solvents. In addition, BWE-CDs effectively scavenged reactive oxygen species (ROS) in A549 cells, 293T cells, and zebrafish, as well as eliminating inflammation in LPS-stimulated zebrafish. Mechanistic studies showed that the anti-inflammatory effect of BWE-CDs was dependent on the direct reaction of CDs with free radicals, the regulation of NO levels, and the upregulation of the expression of SOD and GPX-4. This work indicates that the antioxidant activity of CDs could be enhanced by using solvent extracts of biomass as precursors, and the obtained BWE-CDs exhibit characteristics of greenness, low toxicity, and excellent antioxidant and anti-inflammatory activities, which suggests the potential promising application of BWE-CDs as an antioxidant nanomedicine for inflammatory therapy.


Assuntos
Antioxidantes , Brassica , Animais , Peixe-Zebra , Carbono/química , Água , Anti-Inflamatórios/química , Solventes
2.
Food Chem ; 405(Pt A): 134817, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36370577

RESUMO

In order to extract sulforaphane (SFN) from broccoli via green and efficient ways, a novel method based on salting-out assisted deep eutectic solvent (DES) has been developed. Compared to known organic solvent- (such as dichloromethane, ethyl acetate, n-hexane, etc.) based liquid-liquid extraction, this new N8881Cl-based DES method exhibited excellent extraction efficiency for SFN, including a significant improvement due to the salting-out effect of KH2PO4. Under optimal conditions, 97.77 % of SFN was extracted by N8881Cl-EG DES and more than 82.5 % of SFN was recovered by activated carbon from DES. In addition, further studies with Kamlet-Taft parameters and density functional theory showed that the H-bond accepting capacity of hydrophobic DES, the existing vdW interaction, and the electrostatic interaction between N8881Cl-EG DES all contributed to efficient extraction of SFN. This is the first time that the underlying mechanism for SFN extraction by DES was revealed.


Assuntos
Brassica , Brassica/química , Solventes Eutéticos Profundos , Sulfóxidos , Isotiocianatos , Solventes/química , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA