RESUMO
Volatile esters are the main aromatic components that affect consumer sensory preferences. Aroma is a crucial characteristic of the 'Nanguo' pear (Pyrus ussriensis Maxim). Carboxylesterases (CXEs) are positively correlated with the catabolism of volatile esters in peaches; however, the mechanism of action of CXE family members in 'Nanguo' pear is poorly understood. In this study, 40 PuCXEs were identified in the 'Nanguo' pear and assigned into seven groups. In addition, we found that most PuCXEs were relatively conserved and contained cytoplasmic proteins. This hypothesis was supported by phylogenetic analysis, investigation of conserved domains and gene structures, and prediction of subcellular localization. Based on the content of volatile esters and expression levels of PuCXEs analysis, four PuCXEs, including PuCXE7, PuCXE15, PuCXE20, and PuCXE25, had a significant negative correlation with volatile ester accumulation. Particularly, the correlation of PuCXE15 far exceeded that of the other PuCXEs. The results of the transient expression assay showed that PuCXE15 promoted the degradation of ester in vivo. Subcellular localization experiment revealed that PuCXE15 is located in the plasma membrane and nucleus. These results show that PuCXE15 functions in the catabolism of volatile ester in 'Nanguo' pear fruit, and provides a foundation for enhancing aroma quality by artificial control in pear.
RESUMO
'Nanguo' pear (Pyrus ussuriensis Maxim.) is a typical climacteric fruit with an attractive aroma after postharvest ripening. Esters are the key volatile compounds determining the typical aroma formation. However, the mechanism of aroma-related ester formation remains largely unknown. In this study, we performed transcriptome and metabolome analyses to reveal the changes of aroma-related compounds during pear ripening in the optimal taste period (OTP). During the pear ripening process, typical fatty acid-derived volatile organic compounds (VOCs) are transformed from aldehydes, alcohols, and ketones to esters, where ethyl hexanoate, hexyl acetate, and ethyl butanoate are the dominant esters in the OTP. Rich aroma-related esters in the OTP are associated with the accumulation of important precursors of aroma volatiles, including linoleic acid, α-linolenic acid, γ-linolenic acid, and oleic acid. Genes encoding key biosynthetic enzymes are associated with the altered levels of aroma-related esters. The candidate genes associated with the high levels of aroma-related esters in 'Nanguo' pears are PuFAD2, PuLOX2, PuLOX5, and PuAAT. Additionally, transcription factor (TF) genes such as PuWRKY24, PuIAA29, and PuTINY may play crucial roles in aroma formation during fruit ripening. Hence, we summarized the TFs that regulate VOC metabolism in different fruit species. The results provided a foundation for further research on aroma-related esters in 'Nanguo' pears and could help to elucidate the mechanisms regulating fruit quality improvement.