Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585995

RESUMO

Isolation of adult mouse cardiomyocytes is an essential technique for advancing our understanding of cardiac physiology and pathology, and for developing therapeutic strategies to improve cardiac health. Traditionally, cardiomyocytes are isolated from adult mouse hearts using the Langendorff perfusion method in which the heart is excised, cannulated, and retrogradely perfused through the aorta. While this method is highly effective for isolating cardiomyocytes, it requires specialized equipment and technical expertise. To address the challenges of the Langendorff perfusion method, researchers have developed a Langendorff-free technique for isolating cardiomyocytes. This Langendorff-free technique involves anterograde perfusion through the coronary vasculature by clamping the aorta and intraventricular injection. This method simplifies the experimental setup by eliminating the need for specialized equipment and cannulation of the heart. Here, we introduce an updated Langendorff-free method for isolating adult mice cardiomyocytes that builds on the Langendorff-free protocols developed previously. In this method, the aorta is clamped in situ, and the heart is perfused using a peristaltic pump, water bath, and an injection needle. This simplicity makes cardiomyocyte isolation more accessible for researchers who are new to cardiomyocyte isolation or are working with limited resources. In this report, we provide a step-by-step description of our optimized protocol. In addition, we present example studies of analyzing mitochondrial structural and functional characteristics in isolated cardiomyocytes treated with and without the acute inflammatory stimuli lipopolysaccharide (LPS).

2.
Front Immunol ; 14: 1104652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875088

RESUMO

Background: Interstitial Fibrosis and Tubular Atrophy (IFTA) is the most common cause of long-term graft failure following renal transplant. One of the hallmarks of IFTA is the development of interstitial fibrosis and loss of normal renal architecture. In this study, we evaluated the role of autophagy initiation factor Beclin-1 in protecting against post-renal injury fibrosis. Methods: Adult male wild type (WT) C57BL/6 mice were subjected to Unilateral Ureteral Obstruction (UUO), and kidney tissue samples were harvested at 72-hour, 1- and 3-week post-injury. The UUO-injured and uninjured kidney samples were examined histologically for fibrosis, autophagy flux, inflammation as well activation of the Integrated Stress Response (ISR). We compared WT mice with mice carrying a forced expression of constitutively active mutant form of Beclin-1, Becn1F121A/F121A . Results: In all experiments, UUO injury induces a progressive development of fibrosis and inflammation. These pathological signs were diminished in Becn1F121A/F121A mice. In WT animals, UUO caused a strong blockage of autophagy flux, indicated by continuously increases in LC3II accompanied by an over 3-fold accumulation of p62 1-week post injury. However, increases in LC3II and unaffected p62 level by UUO were observed in Becn1F121A/F121A mice, suggesting an alleviation of disrupted autophagy. Beclin-1 F121A mutation causes a significant decrease in phosphorylation of inflammatory STING signal and limited production of IL6 and IFNγ, but had little effect on TNF-α, in response to UUO. Furthermore, activation of ISR signal cascade was detected in UUO-injured in kidneys, namely the phosphorylation signals of elF2S1 and PERK in addition to the stimulated expression of ISR effector ATF4. However, Becn1F121A/F121A mice did not reveal signs of elF2S1 and PERK activation under the same condition and had a dramatically reduced ATF level at 3-week post injury. Conclusions: The results suggest that UUO causes a insufficient, maladaptive renal autophagy, which triggered downstream activation of inflammatory STING pathway, production of cytokines, and pathological activation of ISR, eventually leading to the development of fibrosis. Enhancing autophagy via Beclin-1 improved renal outcomes with diminished fibrosis, via underlying mechanisms of differential regulation of inflammatory mediators and control of maladaptive ISR.


Assuntos
Traumatismos Abdominais , Obstrução Ureteral , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteína Beclina-1 , Rim , Autofagia , Inflamação , Fibrose
3.
Front Immunol ; 14: 1342429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250062

RESUMO

Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.


Assuntos
Doença Granulomatosa Crônica , Sarcoidose , Humanos , Biomarcadores , Algoritmos , Aprendizado de Máquina , Sarcoidose/diagnóstico , Sarcoidose/genética
4.
J Am Heart Assoc ; 11(14): e025310, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861821

RESUMO

Background We showed that Beclin-1-dependent autophagy protects the heart in young and adult mice that underwent endotoxemia. Herein, we compared the potential therapeutic effects of Beclin-1 activating peptide, TB-peptide, on endotoxemia-induced cardiac outcomes in young adult and aged mice. We further evaluated lipopolysaccharide (lipopolysaccharide)-induced and TB-peptide treatment-mediated alterations in myocardial metabolism. Methods and Results C57BL/6J mice that were 10 weeks and 24 months old were challenged by lipopolysaccharide using doses at which cardiac dysfunction occurred. Following the treatment of TB-peptide or control vehicle, heart contractility, circulating cytokines, and myocardial autophagy were evaluated. We detected that TB-peptide boosted autophagy, attenuated cytokines, and improved cardiac performance in both young and aged mice during endotoxemia. A targeted metabolomics assay was designed to detect a pool of 361 known metabolites, of which 156 were detected in at least 1 of the heart tissue samples. Lipopolysaccharide-induced impairments were found in glucose and amino acid metabolisms in mice of all ages, and TB-peptide ameliorated these alterations. However, lipid metabolites were upregulated in the young group but moderately downregulated in the aged by lipopolysaccharide, suggesting an age-dependent response. TB-peptide mitigated lipopolysaccharide-mediated trend of lipids in the young mice but had little effect on the aged. (Study registration: Project DOI: https://doi.org/10.21228/M8K11W). Conclusions Pharmacological activation of Beclin-1 by TB-peptide is cardiac protective in both young and aged population during endotoxemia, suggest a therapeutic potential for sepsis-induced cardiomyopathy. Metabolomics analysis suggests that an age-independent protection by TB-peptide is associated with reprograming of energy production via glucose and amino acid metabolisms.


Assuntos
Endotoxemia , Aminoácidos/metabolismo , Animais , Proteína Beclina-1/metabolismo , Citocinas/metabolismo , Glucose/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo
5.
Front Cell Dev Biol ; 10: 796061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265609

RESUMO

Background: Mitochondrial deficiency is a known pathology in sepsis-induced organ failure. We previously found that mitochondria-associated membranes (MAMs), a subcellular domain supporting mitochondrial status, are impaired in the heart during endotoxemia, suggesting a mechanism of mitochondrial damage occurred in sepsis. Mitophagy pathway via E3 ubiquitin ligase Parkin and PTEN-induced kinase 1 (PINK1) controls mitochondrial quality. Studies described here examined the impact of Parkin on cardiac MAMs and endotoxemia-induced cardiomyopathy. Additionally, point mutation W403A in Parkin was previously identified as a constitutively active mutation in vitro. In vivo effects of forced expression of this mutation were evaluated in the endotoxemia model. Methods: Mice of wild type (WT), Parkin-deficiency (Park2 -/- ), and knock-in expression of Parkin W402A (human Parkin W403A) were given lipopolysaccharide (LPS) challenge. Cardiac function was evaluated by echocardiography. In the harvested heart tissue, MAM fractions were isolated by ultracentrifugation, and their amount and function were quantified. Ultrastructure of MAMs and mitochondria was examined by electron microscopy. Mitochondrial respiratory activities were measured by enzyme assays. Myocardial inflammation was estimated by levels of pro-inflammatory cytokine IL-6. Myocardial mitophagy was assessed by levels of mitophagy factors associated with mitochondria and degrees of mitochondria-lysosome co-localization. Parkin activation, signified by phosphorylation on serine 65 of Parkin, was also evaluated. Results: Compared with WT, Park2 -/- mice showed more severely impaired cardiac MAMs during endotoxemia, characterized by disrupted structure, reduced quantity, and weakened transporting function. Endotoxemia-induced cardiomyopathy was intensified in Park2 -/- mice, shown by worsened cardiac contractility and higher production of IL-6. Mitochondria from the Park2 -/- hearts were more deteriorated, indicated by losses in both structural integrity and respiration function. Unexpectedly, mice carrying Parkin W402A showed similar levels of cardiomyopathy and mitochondrial damage when compared with their WT counterparts. Further, Parkin W402A mutation neither enhanced mitophagy nor increased Parkin activation in myocardium under the challenge of endotoxemia. Conclusion: our results suggest that Parkin/PINK1 mitophagy participates in the regulation of cardiac MAMs during endotoxemia. Point mutation W402A (human W403A) in Parkin is not sufficient to alleviate cardiomyopathy induced by endotoxemia in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA