Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35564013

RESUMO

Malonyl/acetyltransferase (MAT) is a crucial functional domain of fatty acid synthase (FASN), which plays a vital role in the de novo synthesis of fatty acids in vivo. Milk fatty acids are secreted by mammary epithelial cells. Mammary epithelial cells are the units of mammary gland development and function, and it is a common model for the study of mammary gland tissue development and lactation. This study aimed to investigate the effects of MAT deletion on the synthesis of triacylglycerol and medium-chain fatty acids. The MAT domain was knocked out by CRISPR/Cas9 in the goat mammary epithelial cells (GMECs), and in MAT knockout GMECs, the mRNA level of FASN was decreased by approximately 91.19% and the protein level decreased by 51.83%. The results showed that MAT deletion downregulated the contents of triacylglycerol and medium-chain fatty acids (p < 0.05) and increased the content of acetyl-Coenzyme A (acetyl-CoA) (p < 0.001). Explicit deletion of MAT resulted in significant drop of FASN, which resulted in downregulation of LPL, GPAM, DGAT2, PLIN2, XDH, ATGL, LXRα, and PPARγ genes in GMECs (p < 0.05). Meanwhile, mRNA expression levels of ACC, FASN, DGAT2, SREBP1, and LXRα decreased following treatment with acetyl-CoA (p < 0.05). Our data reveals that FASN plays critical roles in the synthesis of medium-chain fatty acids and triacylglycerol in GMECs.

2.
Foods ; 11(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159497

RESUMO

αS1-Casein (encoded by the CSN1S1 gene) is associated with food allergy more than other milk protein components. Milk allergy caused by αS1-casein is derived from cow milk, goat milk and other ruminant milk. However, little is known about the transcription regulation of αS1-casein synthesis in dairy goats. This study aimed to investigate the regulatory roles of signal transducer and activator of transcription 5 (STAT5) on αS1-casein in goat mammary epithelial cells (GMEC). Deletion analysis showed that the core promoter region of CSN1S1 was located at -110 to -18 bp upstream of transcription start site, which contained two putative STAT5 binding sites (gamma-interferon activation site, GAS). Overexpression of STAT5a gene upregulated the mRNA level and the promoter activity of the CSN1S1 gene, and STAT5 inhibitor decreased phosphorylated STAT5 in the nucleus and CSN1S1 transcription activity. Further, GAS site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays revealed that GAS1 and GAS2 sites in the CSN1S1 promoter core region were binding sites of STAT5. Taken together, STAT5 directly regulates CSN1S1 transcription by GAS1 and GAS2 sites in GMEC, and the mutation of STAT5 binding sites could downregulate CSN1S1 expression and decrease αS1-casein synthesis, which provide the novel strategy for reducing the allergic potential of goat milk and improving milk quality in ruminants.

3.
J Dairy Sci ; 104(5): 6253-6266, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33685712

RESUMO

The elongation of long-chain fatty acid family member 6 (ELOVL6) gene plays an important role in the synthesis of long-chain saturated and monounsaturated fatty acids. Although some studies have revealed that ELOVL6 is the target of sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) in rodents, the mechanism underlying ELOVL6 regulation during lactation in dairy goats remains unknown. The present study aimed to investigate the transcriptional regulation mechanism of ELOVL6 in goat mammary epithelial cells (GMEC). We used PCR to clone and sequenced a 2,370 bp fragment of the ELOVL6 5' flanking region from goat genomic DNA. Deletion analysis revealed a core promoter region located -105 to -40 bp upstream of the transcriptional start site. Mutant sterol regulatory elements (SRE) 1 and 3 significantly reduced the ELOVL6 promoter activities in GMEC. Both SRE1 and SRE3 binding sites were required for the basal transcriptional activity of ELOVL6. Luciferase reporter assays showed that SREBF1 knockdown decreased ELOVL6 promoter activities in GMEC. Furthermore, SRE1 and SRE3 sites were simultaneously mutated completely abolished the stimulatory effect of SREBF1 and the repressive effect of linoleic acid on ELOVL6 gene promoter activities. Furthermore, chromatin immunoprecipitation assays confirmed that SREBP1 directly bound to SRE sites in the ELOVL6 promoter. In conclusion, these results indicate that SREBP1 regulates ELOVL6 transcription via the SRE elements located in the ELOVL6 promoter in goat mammary gland.


Assuntos
Cabras , Glândulas Mamárias Animais , Animais , Sítios de Ligação , Células Epiteliais/metabolismo , Ácidos Graxos , Feminino , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Regiões Promotoras Genéticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA