Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Discov ; 10(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172113

RESUMO

Thirst plays a vital role in the regulation of body fluid homeostasis and if deregulated can be life-threatening. Interoceptive neurons in the subfornical organ (SFO) are intrinsically osmosensitive and their activation by hyperosmolarity is necessary and sufficient for generating thirst. However, the primary molecules sensing systemic osmolarity in these neurons remain elusive. Here we show that the mechanosensitive TMEM63B cation channel is the osmosensor required for the interoceptive neurons to drive thirst. TMEM63B channel is highly expressed in the excitatory SFO thirst neurons. TMEM63B deletion in these neurons impaired hyperosmolarity-induced drinking behavior, while re-expressing TMEM63B in SFO restored water appetite in TMEM63B-deficient mice. Remarkably, hyperosmolarity activates TMEM63B channels, leading to depolarization and increased firing rate of the interoceptive neurons, which drives drinking behavior. Furthermore, TMEM63B deletion did not affect sensitivities of the SFO neurons to angiotensin II or hypoosmolarity, suggesting that TMEM63B plays a specialized role in detecting hyperosmolarity in SFO neurons. Thus, our results reveal a critical osmosensor molecule for the generation of thirst perception.

2.
Aging Cell ; 23(3): e14074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155547

RESUMO

Delirium is the most common neurological complication after cardiac surgery with adverse impacts on surgical outcomes. Advanced age is an independent risk factor for delirium occurrence but its underlying mechanisms are not fully understood. Although increased A1 astrocytes and abnormal hippocampal networks are involved in neurodegenerative diseases, whether A1 astrocytes and hippocampal network changes are involved in the delirium-like behavior of aged mice remains unknown. In the present study, a mice model of myocardial ischemia-reperfusion mimicking cardiac surgery and various assessments were used to investigate the different susceptibility of the occurrence of delirium-like behavior between young and aged mice and the underlying mechanisms. The results showed that surgery significantly increased hippocampal A1 astrocyte activation in aged compared to young mice. The high neuroinflammatory state induced by surgery resulted in glutamate accumulation in the extrasynaptic space, which subsequently decreased the excitability of pyramidal neurons and increased the PV interneurons inhibition through enhancing N-methyl-D-aspartate receptors' tonic currents in the hippocampus. These further induced the abnormal activities of the hippocampal neural networks and consequently contributed to delirium-like behavior in aged mice. Notably, the intraperitoneal administration of exendin-4, a glucagon-like peptide-1 receptor agonist, downregulated A1 astrocyte activation and alleviated delirium-like behavior in aged mice, while IL-1α, TNF-α, and C1q in combination administered intracerebroventricularly upregulated A1 astrocyte activation and induced delirium-like behavior in young mice. Therefore, our study suggested that cardiac surgery increased A1 astrocyte activation which subsequently impaired the hippocampal neural networks and triggered delirium development.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Delírio , Camundongos , Animais , Astrócitos , Hipocampo/fisiologia , Redes Neurais de Computação
4.
Neuropharmacology ; 225: 109383, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565851

RESUMO

Ketamine can produce rapid-acting antidepressant effects in treatment-resistant patients with depression. Although alterations in glutamatergic and GABAergic neurotransmission in the brain play a role in depression, the precise molecular mechanisms in these neurotransmission underlying ketamine's antidepressant actions remain largely unknown. Mice exposed to FSS (forced swimming stress) showed depression-like behavior and decreased levels of GABA (γ-aminobutyric acid), but not glutamate, in the hippocampus. Ketamine increased GABA levels and decreased glutamate levels in the hippocampus of mice exposed to FSS. There was a correlation between GABA levels and depression-like behavior. Furthermore, ketamine increased the levels of enzymes and transporters on the GABAergic neurons (SAT1, GAD67, GAD65, VGAT and GAT1) and astrocytes (EAAT2 and GAT3), without affecting the levels of enzymes and transporters (SAT2, VGluT1 and GABAAR γ2) on glutamatergic neurons. Moreover, ketamine caused a decreased expression of GABAAR α1 subunit, which was specifically expressed on GABAergic neurons and astrocytes, an increased GABA synthesis and metabolism in GABAergic neurons, a plasticity change in astrocytes, and an increase in ATP (adenosine triphosphate) contents. Finally, GABAAR antagonist bicuculline or ATP exerted a rapid antidepressant-like effect whereas pretreatment with GABAAR agonist muscimol blocked the antidepressant-like effects of ketamine. In addition, pharmacological activation and inhibition of GABAAR modulated the synthesis and metabolism of GABA, and the plasticity of astrocytes in the hippocampus. The present data suggest that ketamine could increase GABA synthesis and astrocyte plasticity through downregulation of GABAAR α1, increases in GABA, and conversion of GABA into ATP, resulting in a rapid-acting antidepressant-like action. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Assuntos
Ketamina , Receptores de GABA-A , Camundongos , Animais , Receptores de GABA-A/metabolismo , Ketamina/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Hipocampo/metabolismo , Antagonistas GABAérgicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Depressão/tratamento farmacológico
6.
Mol Psychiatry ; 27(10): 4092-4102, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697757

RESUMO

Inappropriate aggression in humans hurts the society, families and individuals. The genetic basis for aggressive behavior, however, remains largely elusive. In this study, we identified two rare missense variants in X-linked GRIA3 from male patients who showed syndromes featuring aggressive outbursts. Both G630R and E787G mutations in AMPA receptor GluA3 completely lost their ion channel functions. Furthermore, a guanine-repeat single nucleotide polymorphism (SNP, rs3216834) located in the first intron of human GRIA3 gene was found to regulate GluA3 expression with longer guanine repeats (rs3216834-10G/-11G) suppressing transcription compared to the shorter ones (-7G/-8G/-9G). Importantly, the distribution of rs3216834-10G/-11G was elevated in a male violent criminal sample from Chinese Han population. Using GluA3 knockout mice, we showed that the excitatory neurotransmission and neuronal activity in the medial prefrontal cortex (mPFC) was impaired. Expressing GluA3 back into the mPFC alleviated the aggressive behavior of GluA3 knockout mice, suggesting that the defects in mPFC explained, at least partially, the neural mechanisms underlying the aggressive behavior. Therefore, our study provides compelling evidence that dysfunction of AMPA receptor GluA3 promotes aggressive behavior.


Assuntos
Agressão , Receptores de AMPA , Transmissão Sináptica , Animais , Humanos , Masculino , Camundongos , Guanina , Camundongos Knockout , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
7.
Mol Psychiatry ; 27(8): 3468-3478, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484243

RESUMO

N-methyl-D-aspartic acid type glutamate receptors (NMDARs) play critical roles in synaptic transmission and plasticity, the dysregulation of which leads to cognitive defects. Here, we identified a rare variant in the NMDAR subunit GluN2A (K879R) in a patient with intellectual disability. The K879R mutation enhanced receptor expression on the cell surface by disrupting a KKK motif that we demonstrated to be an endoplasmic reticulum retention signal. Expression of GluN2A_K879R in mouse hippocampal CA1 neurons enhanced the excitatory postsynaptic currents mediated by GluN2A-NMDAR but suppressed those mediated by GluN2B-NMDAR and the AMPA receptor. GluN2A_K879R knock-in mice showed similar defects in synaptic transmission and exhibited impaired learning and memory. Furthermore, both LTP and LTD were severely impaired in the KI mice, likely explaining their learning and memory defects. Therefore, our study reveals a new mechanism by which elevated synaptic GluN2A-NMDAR impairs long-term synaptic plasticity as well as learning and memory.


Assuntos
Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Hipocampo/metabolismo , Aprendizagem , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
8.
FASEB J ; 36(3): e22212, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167164

RESUMO

Leucine-rich glioma-inactivated protein 1 (LGI1) is known to play a key role in autosomal dominant lateral temporal lobe epilepsy (ADLTE). The ADLTE is an inherited disease characterized by focal seizures with distinctive auditory or aphasic symptoms. A large number of mutations on the Lgi1 gene have been reported and are believed to be the genetic cause for ADLTE. We identified a novel missense mutation, c.152A>G (p.Asp51Gly), on Lgi1 from a Chinese ADLTE patient who manifests locomotor imbalance and white matter reduction. However, it remains unknown how mutant LGI1 causes white matter abnormalities at molecular and cellular levels. Here, we generated a knock-in mouse bearing this Lgi1 mutation. We found that Lgi1D51G/D51G mice exhibited impaired defective white matter and motor coordination. We observed that Lgi1D51G/D51G mice displayed a reduced number of mature oligodendrocytes (OLs) and deficient OL differentiation in the white matter. However, the population of oligodendrocyte precursor cells was not affected in Lgi1D51G/D51G mice. Mechanistically, we showed that the Lgi1D51G mutation resulted in altered mTOR signaling and led to decreased levels of Sox10. Given that Sox10 is a key transcriptional factor to control OL differentiation, our results strongly suggest that the Lgi1D51G mutation may cause white matter abnormalities via inhibiting Sox10-dependent OL differentiation and myelination in the central nervous system.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Movimento , Substância Branca/metabolismo , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Equilíbrio Postural/genética , Substância Branca/patologia
9.
CNS Neurosci Ther ; 28(2): 237-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767694

RESUMO

AIMS: This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS: A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G/D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G/+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G/D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS: We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G/+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Criança , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linhagem
10.
Sci Rep ; 11(1): 11997, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099816

RESUMO

In the brain, AMPA receptors mediate fast excitatory neurotransmission, the dysfunction of which leads to neuropsychiatric disorders. Synaptic function of AMPA receptors is tightly controlled by a protein group called transmembrane AMPAR regulatory proteins (TARPs). TARP γ-8 (also known as CACNG8) preferentially expresses in the hippocampus, cortex and subcortical regions that are critical for emotion generation indicating its association with psychiatric disorders. Here, we identified rs10420324 (T/G), a SNP located in the human CACNG8 gene, regulated reporter gene expression in vitro and TARP γ-8 expression in the human brain. A guanine at the locus (rs10420324G) suppressed transcription likely through modulation of a local G-quadruplex DNA structure. Consistent with these observations, the frequency of rs10420324G was higher in patients with anti-social personality disorder (ASPD) than in controls, indicating that rs10420324G in CACNG8 is more voluntary for ASPD. We then characterized the behavior of TARP γ-8 knockout and heterozygous mice and found that consistent with ASPD patients who often exhibit impulsivity, aggression, risk taking, irresponsibility and callousness, a decreased γ-8 expression in mice displayed similar behaviors. Furthermore, we found that a decrease in TARP γ-8 expression impaired synaptic AMPAR functions in layer 2-3 pyramidal neurons of the prefrontal cortex, a brain region that inhibition leads to aggression, thus explaining, at least partially, the neuronal basis for the behavioral abnormality. Taken together, our study indicates that TARP γ-8 expression level is associated with ASPD, and that the TARP γ-8 knockout mouse is a valuable animal model for studying this psychiatric disease.


Assuntos
Transtorno da Personalidade Antissocial/metabolismo , Canais de Cálcio/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Animais , Comportamento Animal , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células HEK293 , Humanos , Camundongos Knockout , Células Piramidais/metabolismo , Receptores de Glutamato/metabolismo , Transmissão Sináptica
11.
J Biol Chem ; 295(52): 18199-18212, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33100268

RESUMO

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.


Assuntos
Adenosina Desaminase/fisiologia , Processamento Alternativo , Encéfalo/metabolismo , Canais de Cálcio/genética , Éxons , Edição de RNA , Precursores de RNA/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
J Thorac Dis ; 12(5): 2536-2544, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32642161

RESUMO

BACKGROUND: Low-dose computed tomography (LDCT) scan for lung cancer screening is underutilized. Studies suggest that up to one-third of providers do not know the current lung cancer screening guidelines. Thus, identifying the barriers to utilization of LDCT scan is essential. METHODS: Primary care providers in three different healthcare settings in the United States were surveyed to assess provider knowledge of LDCT scan screening criteria, lung cancer screening practices, and barriers to the utilization of LDCT scan screening. Fisher's Exact, Chi-Squared, and Kruskal-Wallis tests were used to compare provider responses. Multivariable logistic regression was used to test the association between provider characteristics and the likelihood of utilizing LDCT scan for lung cancer screening. RESULTS: The survey was sent to 614 providers, with a 15.7% response rate. Overall, 29.2% of providers report never ordering LDCT scans for eligible patients. Providers practicing at a community or academic hospital more frequently order LDCT scans than those practicing at a safety net hospital. Academic- and community-based providers received a significantly higher mean knowledge score than safety net-based providers [academic 6.84 (SD 1.33), community 6.72 (SD 1.46), safety net 5.85 (SD 1.38); P<0.01]. Overall, only 6.2% of respondents correctly identified all six Centers for Medicare and Medicaid Services eligibility criteria when challenged with three incorrect criteria. Common barriers to utilization of LDCT scan included failure of the electronic medical record (EMR) to notify providers of eligible patients (54.7%), patient refusal (37%), perceived high false-positive rate leading to unnecessary procedures (18.9%), provider time constraints (16.8%), and lack of insurance coverage (13.7%). CONCLUSIONS: Provider knowledge of lung cancer screening guidelines varies, perhaps contributing to underutilization of LDCT scan for lung cancer screening. Improved provider education at safety net hospitals and improving EMR-based best practice alerts may improve the rate of lung cancer screening.

13.
Cell Rep ; 31(5): 107596, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375046

RESUMO

Hypotonic stress causes the activation of swelling-activated nonselective cation channels (NSCCs), which leads to Ca2+-dependent regulatory volume decrease (RVD) and adaptive maintenance of the cell volume; however, the molecular identities of the osmosensitive NSCCs remain unclear. Here, we identified TMEM63B as an osmosensitive NSCC activated by hypotonic stress. TMEM63B is enriched in the inner ear sensory hair cells. Genetic deletion of TMEM63B results in necroptosis of outer hair cells (OHCs) and progressive hearing loss. Mechanistically, the TMEM63B channel mediates hypo-osmolarity-induced Ca2+ influx, which activates Ca2+-dependent K+ channels required for the maintenance of OHC morphology. These findings demonstrate that TMEM63B is an osmosensor of the mammalian inner ear and the long-sought cation channel mediating Ca2+-dependent RVD.


Assuntos
Audição/efeitos dos fármacos , Soluções Hipotônicas/farmacologia , Transporte de Íons/fisiologia , Concentração Osmolar , Canais de Potássio/metabolismo , Animais , Cálcio/metabolismo , Cátions/metabolismo , Tamanho Celular/efeitos dos fármacos , Camundongos Knockout , Potássio/metabolismo , Canais de Potássio/genética , Transdução de Sinais/efeitos dos fármacos
14.
J Biol Chem ; 294(47): 17889-17902, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31628192

RESUMO

The neuropilin and tolloid-like (Neto) proteins Neto1 and Neto2 are auxiliary subunits of kainate-type glutamate receptors (KARs) that regulate KAR trafficking and gating. However, how Netos bind and regulate the biophysical functions of KARs remains unclear. Here, we found that the N-terminal domain (NTD) of glutamate receptor ionotropic kainate 2 (GluK2) binds the first complement C1r/C1s-Uegf-BMP (CUB) domain of Neto proteins (i.e. NTD-CUB1 interaction) and that the core of GluK2 (GluK2ΔNTD) binds Netos through domains other than CUB1s (core-Neto interaction). Using electrophysiological analysis in HEK293T cells, we examined the effects of these interactions on GluK2 gating, including deactivation, desensitization, and recovery from desensitization. We found that NTD deletion does not affect GluK2 fast gating kinetics, the desensitization, and the deactivation. We also observed that Neto1 and Neto2 differentially regulate GluK2 fast gating kinetics, which largely rely on the NTD-CUB1 interactions. NTD removal facilitated GluK2 recovery from desensitization, indicating that the NTD stabilizes the GluK2 desensitization state. Co-expression with Neto1 or Neto2 also accelerated GluK2 recovery from desensitization, which fully relied on the NTD-CUB1 interactions. Moreover, we demonstrate that the NTD-CUB1 interaction involves electric attraction between positively charged residues in the GluK2_NTD and negatively charged ones in the CUB1 domains. Neutralization of these charges eliminated the regulatory effects of the NTD-CUB1 interaction on GluK2 gating. We conclude that KARs bind Netos through at least two sites and that the NTD-CUB1 interaction critically regulates Neto-mediated GluK2 gating.


Assuntos
Ativação do Canal Iônico , Proteínas de Membrana/metabolismo , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Humanos , Proteínas de Membrana/química , Camundongos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Ratos , Receptores de Ácido Caínico/química , Receptores de N-Metil-D-Aspartato/química , Deleção de Sequência , Receptor de GluK2 Cainato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA