Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 14(1): 6180, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486041

RESUMO

Long non-coding RNA (lncRNA) regulates many physiological processes by acting as competitive endogenous RNA (ceRNA). The dysregulation of lncRNA X-inactive specific transcript (XIST) has been shown in various human disorders. However, its role in the pathogenesis of polycystic ovary syndrome (PCOS) is yet to be explored. This study aimed to explore the underlying mechanism of XIST in the pathogenesis of PCOS, specifically through dataset functional analysis. GEO PCOS datasets including RNA-seq, microarray, and miRNA-seq in granulosa cells (GCs) and blood, were examined and comprehensively analyzed. Enrichment analysis, ROC curve constructions, lncRNA-miRNA-mRNA interaction network analyses, and qRT-PCR validation were performed followed by a series of drug signature screenings. Our results revealed significant dysregulation in the expression of 1131 mRNAs, 30 miRNAs, and XIST in GCs of PCOS patients compared to healthy individuals. Of the120 XIST-correlated upregulated genes, 25 were enriched in inflammation-related pathways. Additionally, 5 miRNAs were identified as negative regulators of XIST-correlated genes. Accordingly, a ceRNA network containing XIST-miRNAs-mRNAs interactions was constructed. Furthermore, 6 genes, including AQP9, ETS2, PLAU, PLEK, SOCS3, and TNFRSF1B served as both GCs and blood-based biomarkers. By analyzing the number of interactions among XIST, miRNAs, and mRNAs, we pinpointed ETS2 as the pivotal gene within the ceRNA network. Our findings reveal a novel XIST- hsa-miR-146a-5p, hsa-miR-144-3p, and hsa-miR-1271-5p-ETS2 axis that comprehensively elucidates the XIST-associated mechanism underlying PCOS onset. qRT-PCR analysis further confirmed the, overexpression of both XIST and ETS2 . Furthermore, our results demonstrated that XIST and ETS2 were correlated with some assisted reproductive technologies outcomes. Finally, we identified two novel compounds including, methotrexate/folate and threonine using drug-gene interaction databases for PCOS management. These findings provide novel insights into the molecular etiology, diagnosis, and potential therapeutic interventions for PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , Transcriptoma
3.
Cancer Drug Resist ; 6(2): 242-256, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457129

RESUMO

Aim: Given the encouraging results of the p53-Mdm2 inhibitor RG7388 in clinical trials and the vital function of miR-16-5p in suppressing cell proliferation, the aim of the present study was to investigate the combined impact of RG7388 and miR-16-5p overexpression on the childhood acute lymphoblastic leukemia (chALL). Methods: miRTarBase and miRDB, along with KEGG and STRING databases, were used to predict miR-16-5p target genes and explore protein-protein interaction networks, respectively. B- and T-lymphoblastic cell lines, in addition to patient primary cells, were treated with RG7388. Ectopic overexpression of miR-16-5p in Nalm6 cell line was induced through cell electroporation and transfection of microRNA mimics was confirmed by qRT-PCR. Cell viability was evaluated using the MTT assay. Western blot analyses were performed to evaluate the effects of RG7388 and miR-16-5p upregulation on the protein levels of p53 and its downstream target genes in chALL cells. Paired sample t-test was employed for statistical analyses. Results: MTT assay showed RG7388-induced cytotoxicity in wild-type p53 Nalm6 cell line and p53 functional patient primary cells. However, CCRF-CEM and p53 non-functional leukemic cells indicated drug resistance. Western blot analyses validated the bioinformatics results, confirming the downregulation of WIP1, p53 stabilization, as well as overexpression of p21WAF1 and Mdm2 proteins in Nalm6 cells transfected with miR-16-5p. Moreover, enhanced sensitivity to RG7388 was observed in the transfected cells. Conclusion: This is the first study indicating the mechanistic importance of miR-16-5p overexpression in chALL and its inhibitory role in leukemia treatment when combined with the p53-Mdm2 antagonist, RG7388. These findings might be useful for researchers and clinicians to pave the way for better management of chALL.

4.
Curr Drug Targets ; 20(11): 1091-1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947669

RESUMO

MDM2 protein is the core negative regulator of p53 that maintains the cellular levels of p53 at a low level in normal cells. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies with wild-type TP53, p53 function is inhibited through other mechanisms. Recently, synthetic small molecule inhibitors have been developed which target a small hydrophobic pocket on MDM2 to which p53 normally binds. Given that MDM2-p53 antagonists have been undergoing clinical trials for different types of cancer, this review illustrates different aspects of these new cancer targeted therapeutic agents with the focus on the major advances in the field. It emphasizes on the p53 function, regulation of p53, targeting of the p53-MDM2 interaction for cancer therapy, and p53-dependent and -independent effects of inhibition of p53-MDM2 interaction. Then, representatives of small molecule MDM2-p53 binding antagonists are introduced with a focus on those entered into clinical trials. Furthermore, the review discusses the gene signatures in order to predict sensitivity to MDM2 antagonists, potential side effects and the reasons for the observed hematotoxicity, mechanisms of resistance to these drugs, their evaluation as monotherapy or in combination with conventional chemotherapy or with other targeted therapeutic agents. Finally, it highlights the certainly intriguing questions and challenges which would be addressed in future studies.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteína Supressora de Tumor p53/genética
5.
Cancer Med ; 7(9): 4744-4754, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30109783

RESUMO

NUCOLL43 is a novel ovarian clear cell carcinoma (O-CCC) cell line that arose from a primary culture of a patient's malignant ascites. The cells grow reliably in cell culture with a doubling time of approx. 45 hours and form colonies at high efficiency. They have a very high degree of loss of heterozygosity (LOH) affecting approximately 85% of the genome, mostly copy neutral and almost identical to the original tumor. The cells express epithelial (pan-cytokeratin) and mesenchymal (vimentin) characteristics, CA125 and p16, like the original tumor. They also express ARID1A but not HNF-1ß and, like the original tumor, and are negative for p53 expression, with no evidence of p53 function. NUCOLL43 cells express all other DNA damage response proteins investigated and have functional homologous recombination DNA repair. They are insensitive to cisplatin, the PARP inhibitor rucaparib, and MDM2 inhibitors but are sensitive to camptothecin, paclitaxel, and NVP-BEZ235. The NUCOLL43 cell line represents a distinct subtype of O-CCC that is p53 and HNF-1ß null but expresses ARID1A. Its high degree of similarity with the original tumor genomically and proteomically, as well as the high level of LOH, make this an interesting cell line for O-CCC research. It has been deposited with Ximbio.


Assuntos
Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Estudo de Associação Genômica Ampla , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Variantes Farmacogenômicos , Adenocarcinoma de Células Claras/diagnóstico por imagem , Adenocarcinoma de Células Claras/tratamento farmacológico , Biópsia , Linhagem Celular Tumoral , Feminino , Genômica , Humanos , Repetições de Microssatélites , Pessoa de Meia-Idade , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Fenótipo , Reparo de DNA por Recombinação , Tomografia Computadorizada por Raios X
6.
Oncotarget ; 8(41): 69779-69796, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-29050241

RESUMO

Ovarian cancer is the seventh most common cancer worldwide for females and the most lethal of all gynecological malignancies. The treatment of ovarian cancer remains a challenge in spite of advances in debulking surgery and changes in both chemotherapy schedules and routes of administration. Cancer treatment has recently been improving with the introduction of targeted therapies to achieve greater specificity and less cytotoxicity. Both PARP inhibitors and MDM2-p53 binding antagonists are targeted therapeutic agents entered into clinical trials. This preclinical study evaluated the effect of Nutlin-3/RG7388 and rucaparib as single agents and in combination together in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3/RG7388 combination with rucaparib was additive to, or synergistic in a cell type-dependent manner. Mechanism studies showed rucaparib alone had no effect on p53 stabilization or activity. Although treatment with Nutlin-3 or RG7388 induced stabilization of p53 and upregulation of p21WAF1 and MDM2, the addition of rucaparib did not enhance the p53 activation seen with the MDM2 inhibitors alone. These results demonstrate that the synergistic effect on growth inhibition observed in the combination between rucaparib and Nutlin-3/RG7388 is not the result of increased p53 molecular pathway activation. Nevertheless, combined treatment of Nutlin-3/RG7388 with rucaparib increased cell cycle arrest and apoptosis, which was marked for A2780 and IGROV-1. These data indicate that combination treatment with MDM2 inhibitors and rucaparib has synergistic and dose reduction potential for the treatment of ovarian cancer, dependent on cell type.

7.
Oncotarget ; 7(26): 40115-40134, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27223080

RESUMO

Ovarian cancer is the fifth leading cause of cancer-related female deaths. Due to serious side effects, relapse and resistance to standard chemotherapy, better and more targeted approaches are required. Mutation of the TP53 gene accounts for 50% of all human cancers. In the remaining malignancies, non-genotoxic activation of wild-type p53 by small molecule inhibition of the MDM2-p53 binding interaction is a promising therapeutic strategy. Proof of concept was established with the cis-imidazoline Nutlin-3, leading to the development of RG7388 and other compounds currently in early phase clinical trials. This preclinical study evaluated the effect of Nutlin-3 and RG7388 as single agents and in combination with cisplatin in a panel of ovarian cancer cell lines. Median-drug-effect analysis showed Nutlin-3 or RG7388 combination with cisplatin was additive to, or synergistic in a p53-dependent manner, resulting in increased p53 activation, cell cycle arrest and apoptosis, associated with increased p21WAF1 protein and/or caspase-3/7 activity compared to cisplatin alone. Although MDM2 inhibition activated the expression of p53-dependent DNA repair genes, the growth inhibitory and pro-apoptotic effects of p53 dominated the response. These data indicate that combination treatment with MDM2 inhibitors and cisplatin has synergistic potential for the treatment of ovarian cancer, dependent on cell genotype.


Assuntos
Cisplatino/farmacologia , Imidazóis/farmacologia , Neoplasias Ovarianas/patologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , para-Aminobenzoatos/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Reparo do DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Neoplasias Ovarianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA