Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1745-1758, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38230993

RESUMO

A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.


Assuntos
Ciclamos , Chumbo , Humanos , Medicina de Precisão , Quelantes/química , Ligantes
2.
Inorg Chem ; 62(50): 20777-20790, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37768780

RESUMO

Silver-111 is an attractive unconventional candidate for targeted cancer therapy as well as for single photon emission computed tomography and can be complemented by silver-103 for positron emission tomography noninvasive diagnostic procedures. However, the shortage of chelating agents capable of forming stable complexes tethered to tumor-seeking vectors has hindered their in vivo application so far. In this study, a comparative investigation of a series of sulfur-containing structural homologues, namely, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetraazacyclotetradecane (TE4S) was conducted to appraise the influence of different polyazamacrocyclic backbones on Ag+ complexation. The performances of these macrocycles were also compared with those of the previously reported Ag+/[111Ag]Ag+-chelator 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S). Nuclear magnetic resonance data supported by density functional theory calculations and X-ray crystallographic results gave insights into the coordination environment of these complexes, suggesting that all of the donor atoms are generally involved in the metal coordination. However, the modifications of the macrocycle topology alter the dynamic binding of the pendant arms or the conformation of the ring around the metal center. Combined pH/pAg-potentiometric and spectroscopic experiments revealed that the 12-member N4 backbone of DO4S forms the most stable Ag+ complex while both the enlargement and the shrinkage of the macrocyclic frame dwindle the stability of the complexes. Radiolabeling experiments, conducted with reactor-produced [111Ag]Ag+, evidenced that the thermodynamic stability trend is reflected in the ligand's ability to incorporate the radioactive ion at high molar activity, even in the presence of a competing cation (Pd2+), as well as in the integrity of the corresponding complexes in human serum. As a consequence, DO4S proved to be the most favorable candidate for future in vivo applications.


Assuntos
Quelantes , Prata , Humanos , Quelantes/química , Prata/química , Medicina de Precisão , Radioisótopos , Espectroscopia de Ressonância Magnética
3.
Inorg Chem ; 62(50): 20621-20633, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37115633

RESUMO

The biologically triggered reduction of Cu2+ to Cu+ has been postulated as a possible in vivo decomplexation pathway in 64/67Cu-based radiopharmaceuticals. In an attempt to hinder this phenomenon, we have previously developed a family of S-containing polyazamacrocycles based on 12-, 13-, or 14-membered tetraaza rings able to stabilize both oxidation states. However, despite the high thermodynamic stability of the resulting Cu2+/+ complexes, a marked [64Cu]Cu2+ release was detected in human serum, likely as a result of the partially saturated coordination sphere around the copper center. In the present work, a new hexadentate macrocyclic ligand, 1,4,7-tris[2-(methylsulfanyl)ethyl)]-1,4,7-triazacyclononane (NO3S), was synthesized by hypothesizing that a smaller macrocyclic backbone could thwart the observed demetalation by fully encapsulating the copper ion. To unveil the role of the S donors in the metal binding, the corresponding alkyl analogue 1,4,7-tris-n-butyl-1,4,7-triazacyclononane (TACN-n-Bu) was considered as comparison. The acid-base properties of the free ligands and the kinetic, thermodynamic, and structural properties of their Cu2+ and Cu+ complexes were investigated in solution and solid (crystal) states through a combination of spectroscopic and electrochemical techniques. The formation of two stable mononuclear species was detected in aqueous solution for both ligands. The pCu2+ value for NO3S at physiological pH was 6 orders of magnitude higher than that computed for TACN-n-Bu, pointing out the significant stabilizing contribution arising from the Cu2+-S interactions. In both the solid state and solution, Cu2+ was fully embedded in the ligand cleft in a hexacoordinated N3S3 environment. Furthermore, NO3S exhibited a remarkable ability to form a stable complex with Cu+ through the involvement of all of the donors in the coordination sphere. Radiolabeling studies evidenced an excellent affinity of NO3S toward [64Cu]Cu2+, as quantitative incorporation was achieved at high apparent molar activity (∼10 MBq/nmol) and under mild conditions (ambient temperature, neutral pH, 10 min reaction time). Human serum stability assays revealed an increased stability of [64Cu][Cu(NO3S)]2+ when compared to the corresponding complexes formed by 12-, 13-, or 14-membered tetraaza rings.

4.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807404

RESUMO

Copper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu2+-Cu+ redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu2+ and Cu+. In this work, the labelling performances of a series of S-rich polyazamacrocyclic chelators with [64Cu]Cu2+ and the stability of the [64Cu]Cu-complexes thereof were evaluated. Among the chelators considered, the best results were obtained with 1,7-bis [2-(methylsulfanyl)ethyl]-4,10,diacetic acid-1,4,7,10-tetraazacyclododecane (DO2A2S). DO2A2S was labelled at high molar activities in mild reaction conditions, and its [64Cu]Cu2+ complex showed excellent integrity in human serum over 24 h. Biodistribution studies in BALB/c nude mice performed with [64Cu][Cu(DO2A2S)] revealed a behavior similar to other [64Cu]Cu-labelled cyclen derivatives characterized by high liver and kidney uptake, which could either be ascribed to transchelation phenomena or metabolic processing of the intact complex.


Assuntos
Radioisótopos de Cobre , Medicina de Precisão , Animais , Quelantes , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
5.
J Phys Chem Lett ; 12(23): 5616-5622, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34110174

RESUMO

Ligand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron. This allows the analysis of molecular dynamics simulations of ligand shell-protected nanoparticles to define their exact surface morphology and pocket fingerprints of binding cavities in the coating monolayer. Importantly, from dissecting the well-characterized pairing formed by the guest salicylate molecule and specific host nanoreceptors, our work reveals that guest binding at such nanoreceptors occurs via preformed deep pockets in the host. Upon the interaction with the guest, such pockets undergo an induced-fit-like structural optimization for best host-guest fitting. Our findings and methodological advancement will accelerate the rational design of new-generation nanoreceptors.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Simulação de Dinâmica Molecular , Mapeamento de Peptídeos/métodos , Biologia Computacional/métodos , Ouro/química , Nanopartículas Metálicas/química , Propriedades de Superfície
6.
Commun Chem ; 4(1): 93, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-36697571

RESUMO

Understanding and controlling the interaction between nanoparticles and biological entities is fundamental to the development of nanomedicine applications. In particular, the possibility to realize nanoparticles capable of directly targeting neutral lipid membranes would be advantageous to numerous applications aiming at delivering nanoparticles and their cargos into cells and biological vesicles. Here, we use experimental and computational methodologies to analyze the interaction between liposomes and gold nanoparticles (AuNPs) featuring cationic headgroups in their protecting monolayer. We find that in contrast to nanoparticles decorated with other positively charged headgroups, guanidinium-coated AuNPs can bind to neutral phosphatidylcholine liposomes, inducing nondisruptive membrane permeabilization. Atomistic molecular simulations reveal that this ability is due to the multivalent H-bonding interaction between the phosphate residues of the liposome's phospholipids and the guanidinium groups. Our results demonstrate that the peculiar properties of arginine magic, an effect responsible for the membranotropic properties of some naturally occurring peptides, are also displayed by guanidinium-bearing functionalized AuNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA