Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576257

RESUMO

Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12-15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.


Assuntos
Hormônio Antimülleriano/química , Hormônio Foliculoestimulante/metabolismo , Ovário/metabolismo , Receptores de Peptídeos/química , Receptores de Fatores de Crescimento Transformadores beta/química , Proteínas Recombinantes/química , Animais , Hormônio Antimülleriano/metabolismo , Bass , Células COS , Chlorocebus aethiops , Estradiol/metabolismo , Feminino , Gonadotropinas/metabolismo , Gônadas/metabolismo , Células da Granulosa/metabolismo , Imunoensaio , Folículo Ovariano/metabolismo , Plasmídeos/metabolismo , Esteroides/metabolismo , Células Tecais/metabolismo , Vitelogênese
2.
Gen Comp Endocrinol ; 305: 113730, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545062

RESUMO

Galanin (Gal) is a neuropeptide with multiple functions that is widely expressed in the central and peripheral nervous systems of vertebrates. Anatomical and functional evidence suggests a possible role in regulating reproduction in fishes. To test this possibility, we have isolated and characterized two gal alternative transcripts in European sea bass (Dicentrarchus labrax) that encode two prepropeptides, respectively of 29 (gal_MT853221) and 53 (gal_MT853222) amino acids. The two gal transcripts are highly expressed in brain, pituitary and gonads, and appear to be differentially regulated in males and females. In males, gal_MT853222 in the hypothalamus and gal_MT853221 in the pituitary were downregulated with the progression of spermatogenesis (stages I-III). Both transcripts are downregulated in testicles of 1-year (precocious) and 2-year spermiating males compared to immature fish of the same age. Gal peptides and receptors are expressed throughout ovarian development in the hypothalamic-pituitary-gonadal (HPG) axis of females. In the testis, immunoreactive Gal-29 and Gal-53 peptides were detected in blood vessels and Leydig cells during the spermatogenesis stages I-III but Gal immunostaining was barely undetected in more advanced stages. In the ovary, both peptides localized in interstitial cells and blood vessels and in theca cells surrounding the maturing oocytes. The immunolocalization of galanin in Leydig and theca cells suggests a possible role in steroid production regulation. The different pattern of gal expression and Gal localization in the testis and ovary may suggest the possibility that androgens and estrogens may also regulate Gal gene transcription and translation. Altogether, this study showed evidence for the possible involvement of locally produced Gal in gametogenesis and that its production is differentially regulated in male and female gonads.


Assuntos
Bass , Processamento Alternativo , Animais , Bass/genética , Feminino , Galanina/genética , Gônadas , Masculino , Isoformas de Proteínas
3.
Heliyon ; 5(2): e01201, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30839897

RESUMO

Retinoic Acid (RA) is a vitamin A derivative present in many biological processes including embryogenesis, organ development and cell differentiation. The RA signaling pathway is essential for the onset of meiosis in tetrapods, although its role in fish reproduction needs further evidence. This study reports the expression profiles of several genes involved in this pathway during sex differentiation and the first reproductive season in European sea bass (Dicentrarchus labrax) gonads. The assessed genes are representative of several steps of the pathway including retinol transport, RA synthesis, nuclear receptors, RA transport and degradation. The study includes a synteny analysis of stra8, a tetrapod meiosis gatekeeper, in several taxa. The results show that, these genes were overexpressed during early gonad development and their expression decreased during meiosis progression in males and during vitellogenesis in females. Specifically, a decrease of cyp26a1, involved in RA degradation, together with an increase of aldh1a2 and aldh1a3, in charge of RA-synthesis, might ensure the availability of high RA levels at the time of meiosis in males and females. Moreover, the absence of stra8 in the European sea bass genome, as well as the conserved genomic neighbourhood found in other taxa, suggest a stra8 independent signaling for RA during meiosis. Taken together, our results might help to better understand the role of RA signaling in teleost gonad development.

4.
Gen Comp Endocrinol ; 279: 184-195, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923006

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.


Assuntos
Bass/metabolismo , Gonadotropinas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Animais , Hormônios Hipotalâmicos/química , Especificidade de Órgãos , Reprodução/fisiologia
5.
Gen Comp Endocrinol ; 275: 82-93, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738863

RESUMO

This study evaluated the impact of continuous light (LL) within the photolabile period on advanced puberty in juvenile male European sea bass. The exposure to an LL regime for 1 month, from August 15 to September 15 (LLa/s), was compared to a constant simulated natural photoperiod (NP) and constant continuous light conditions year-round (LLy). Somatic growth, hormone plasma levels, rates of testicular maturation and spermiation, as well as the mRNA levels of some reproductive genes were analyzed. Our results demonstrated that both LLa/s and LLy treatments, which include LL exposure during the photolabile period, were highly effective in inhibiting the gametogenesis process that affects testicular development, and clearly reduced the early sexual maturation of males. Exposure to an LL photoperiod affected body weight and length of juvenile fish during early gametogenesis and throughout the first year of life. Interestingly, LL induced bi-weekly changes in some reproductive factors affecting Gnrh1 and Gnrh2 content in the brain, and also reduced pituitary fshß expression and plasmatic levels of 11-KT, E2, Fsh throughout early gametogenesis. We suggest that low levels of E2 in early September in the LL groups, which would be concomitant with the reduced number of spermatogonial mitoses in these groups, might indicate a putative role for estrogens in spermatogonial proliferation during the early gonadal development of this species. Furthermore, a significant decrease in amh expression was observed, coinciding with low plasma levels of 11-KT under LL regimes, which is consistent with the idea that this growth factor may be crucial for the progress of spermatogenesis in male sea bass.


Assuntos
Bass/crescimento & desenvolvimento , Iluminação , Fotoperíodo , Reprodução/fisiologia , Maturidade Sexual/fisiologia , Animais , Bass/sangue , Subunidade beta do Hormônio Folículoestimulante/sangue , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/sangue , Masculino , Precursores de Proteínas/sangue , Diferenciação Sexual/fisiologia , Espermatogênese/fisiologia , Fatores de Tempo
7.
BMC Genomics ; 18(1): 441, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583077

RESUMO

BACKGROUND: Spermatogenesis is a complex process characterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species. RESULTS: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty. Furthermore, changes in the expression of three RA nuclear receptors point at the importance of the RA-signalling pathway during this period, in agreement with its role in meiosis. CONCLUSION: The results contribute to boost our knowledge of the early molecular and endocrine events that trigger pubertal development and the onset of spermatogenesis in fish. These include an increase in 11KT plasma levels and changes in the expression of several genes involved in cell proliferation, cell cycle progression, meiosis or RA-signalling pathway. Moreover, the results can be applied to study meiosis in this economically important fish species for Mediterranean countries, and may help to develop tools for its sustainable aquaculture.


Assuntos
Bass/genética , Bass/fisiologia , Sequência Conservada , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Puberdade/genética , Animais , Bass/metabolismo , Clonagem Molecular , Ontologia Genética , Hormônios/metabolismo , Masculino , Filogenia
8.
PLoS One ; 11(10): e0165494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27788270

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish. The main objective of this study was to evaluate the effects of peripheral sbGnih-1 and sbGnih-2 implants on gonadal development and steroidogenesis during the reproductive cycle of male sea bass (Dicentrarchus labrax). Both Gnihs decreased testosterone (T) and 11-ketotestosterone (11-KT) plasma levels in November and December (early- and mid-spermatogenesis) but did not affect plasma levels of the progestin 17,20ß-dihydroxy-4-pregnen-3-one (DHP). In February (spermiation), fish treated with sbGnih-1 and sbGnih-2 exhibited testicles with abundant type A spermatogonia and partial spermatogenesis. In addition, we determined the effects of peripheral Gnih implants on plasma follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) levels, as well as on brain and pituitary expression of the main reproductive hormone genes and their receptors during the spermiation period (February). Treatment with sbGnih-2 increased brain gnrh2, gnih, kiss1r and gnihr transcript levels. Whereas, both Gnihs decreased lhbeta expression and plasma Lh levels, and sbGnih-1 reduced plasmatic Fsh. Finally, through behavioral recording we showed that Gnih implanted animals exhibited a significant increase in diurnal activity from late spermatogenic to early spermiogenic stages. Our results indicate that Gnih may regulate the reproductive axis of sea bass acting not only on brain and pituitary hormones but also on gonadal physiology and behavior.


Assuntos
Bass/metabolismo , Hormônios Hipotalâmicos/farmacologia , Locomoção/efeitos dos fármacos , Esteroides/biossíntese , Testículo/efeitos dos fármacos , Testículo/metabolismo , Sequência de Aminoácidos , Animais , Gametogênese/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Gonadotropinas/sangue , Hormônios Hipotalâmicos/química , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Testículo/crescimento & desenvolvimento
9.
Artigo em Inglês | MEDLINE | ID: mdl-27164487

RESUMO

Previous works on European sea bass have determined that long-term exposure to restrictive feeding diets alters the rhythms of some reproductive/metabolic hormones, delaying maturation and increasing apoptosis during gametogenesis. However, exactly how these diets affect key genes and hormones on the brain-pituitary-gonad (BPG) axis to trigger puberty is still largely unknown. We may hypothesize that all these signals could be integrated, at least in part, by the kisspeptin system. In order to capture a glimpse of these regulatory mechanisms, kiss1 and kiss2 mRNA expression levels and those of their kiss receptors (kiss1r, kiss2r) were analyzed in different areas of the brain and in the pituitary of pubertal male sea bass during gametogenesis. Furthermore, other reproductive hormones and factors as well as the percentage of males showing full spermiation were also analyzed. Treated fish fed maintenance diets provided evidence of overexpression of the kisspeptin system in the main hypophysiotropic regions of the brain throughout the entire sexual cycle. Conversely, Gnrh1 and gonadotropin pituitary content and plasma sexual steroid levels were downregulated, except for Fsh levels, which were shown to increase during spermiation. Treated fish exhibited lower rates of spermiation as compared to control group and a delay in its accomplishment. These results demonstrate how the kisspeptin system and plasma Fsh levels are differentially affected by maintenance diets, causing a retardation, but not a full blockage of the reproductive process in the teleost fish European sea bass. This suggests that a hormonal adaptive strategy may be operating in order to preserve reproductive function in this species.


Assuntos
Bass/fisiologia , Proteínas de Peixes/fisiologia , Alimentos , Kisspeptinas/fisiologia , Reprodução/fisiologia , Maturidade Sexual/fisiologia , Animais , Bass/genética , Proteínas de Peixes/genética , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/sangue , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante/metabolismo , Masculino , Mesencéfalo/metabolismo , Hipófise/metabolismo , Prosencéfalo/metabolismo , Receptores do FSH/genética , Receptores do FSH/fisiologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores do LH/genética , Receptores do LH/fisiologia , Reprodução/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Maturidade Sexual/genética , Espermatogênese/genética , Espermatogênese/fisiologia
10.
Biol Reprod ; 94(6): 141, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27226310

RESUMO

In higher vertebrates, anti-Müllerian hormone (AMH) is required for Müllerian duct regression in fetal males. AMH is also produced during postnatal life in both sexes regulating steroidogenesis and early stages of folliculogenesis. Teleosts lack Müllerian ducts, but Amh has been identified in several species including European sea bass. However, information on Amh type-2 receptor (Amhr2), the specific receptor for Amh binding, is restricted to a couple of fish species. Here, we report on cloning sea bass amhr2, the production of a recombinant sea bass Amh, and the functional analysis of this ligand-receptor couple. Phylogenetic analysis revealed that sea bass amhr2 segregates with Amhr2 from other vertebrates. This piscine receptor is capable of activating Smad proteins. Antibodies raised against sea bass Amh were used to study native and recombinant Amh, revealing proteins in the range of 66-70 kDa corresponding to the full length Amh. Once proteolytically treated, recombinant sea bass Amh generates a 12 kDa C-terminal mature protein, suggesting that contrary to what has been described for other fish Amh proteins, this protein is processed in a similar way as mammalian AMH. The mature sea bass Amh is a biologically active protein able to bind sea bass Amhr2 and, surprisingly, also human AMHR2. In prepubertal sea bass testes, Amh was detected by immunohistochemistry mostly in Sertoli cells surrounding early germ-cell generations. During spermatogenesis, a weaker staining signal could be observed in Sertoli cells surrounding spermatocytes.


Assuntos
Hormônio Antimülleriano/metabolismo , Bass/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Animais , Bass/metabolismo , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Feminino , Masculino , Filogenia , Reprodução , Análise de Sequência de DNA , Testículo/metabolismo
11.
Biol Reprod ; 94(6): 121, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984999

RESUMO

Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin synthesis and release from the pituitary of birds and mammals. However, the physiological role of orthologous GnIH peptides on the reproductive axis of fish is still uncertain, and their actions on the main neuroendocrine systems controlling reproduction (i.e., GnRHs, kisspeptins) have received little attention. In a recent study performed in the European sea bass, we cloned a cDNA encoding a precursor polypeptide that contained C-terminal MPMRFamide (sbGnIH-1) and MPQRFamide (sbGnIH-2) peptide sequences, developed a specific antiserum against sbGnIH-2, and characterized its central and pituitary GnIH projections in this species. In this study, we analyzed the effects of intracerebroventricular injection of sbGnIH-1 and sbGnIH-2 on brain and pituitary expression of reproductive hormone genes (gnrh1, gnrh2, gnrh3, kiss1, kiss2, gnih, lhbeta, fshbeta), and their receptors (gnrhr II-1a, gnrhr II-2b, kiss1r, kiss2r, and gnihr) as well as on plasma Fsh and Lh levels. In addition, we determined the effects of GnIH on pituitary somatotropin (Gh) expression. The results obtained revealed the inhibitory role of sbGnIH-2 on brain gnrh2, kiss1, kiss2, kiss1r, gnih, and gnihr transcripts and on pituitary fshbeta, lhbeta, gh, and gnrhr-II-1a expression, whereas sbGnIH-1 only down-regulated brain gnrh1 expression. However, at different doses, central administration of both sbGnIH-1 and sbGnIH-2 decreased Lh plasma levels. Our work represents the first study reporting the effects of centrally administered GnIH in fish and provides evidence of the differential actions of sbGnIH-1 and sbGnIH-2 on the reproductive axis of sea bass, the main inhibitory role being exerted by the sbGnIH-2 peptide.


Assuntos
Bass/fisiologia , Hormônios Hipotalâmicos/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Reprodução , Animais , Expressão Gênica , Gonadotropinas/sangue , Injeções Intraventriculares , Masculino
12.
Gen Comp Endocrinol ; 229: 100-11, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26979276

RESUMO

In this study, we report the cloning of three transcripts for leptin receptor in the European sea bass, a marine teleost of economic interest. The two shortest variants, generated by different splice sites, encode all functional extracellular and intracellular domains but missed the transmembrane domain. The resulting proteins are therefore potential soluble binding proteins for leptin. The longest transcript (3605bp), termed sblepr, includes all the essential domains for binding and transduction of the signal. Thus, it is proposed as the ortholog for the human LEPR gene, the main responsible for leptin signaling. Phylogenetic analysis shows the sblepr clustered within the teleost leptin receptor group in 100% of the bootstrap replicates. The neuroanatomical localization of sblepr expressing cells has been assessed by in situ hybridization in brains of sea bass of both sexes during their first sexual maturation. At histological level, the distribution pattern of sblepr expressing cells in the brain shows no clear differences regarding sex or reproductive season. Transcripts of the sblepr have a widespread distribution throughout the forebrain and midbrain until the caudal portion of the hypothalamus. A high hybridization signal is detected in the telencephalon, preoptic area, medial basal and caudal hypothalamus and in the pituitary gland. In a more caudal region, sblepr expressing cells are identified in the longitudinal torus. The expression pattern observed for sblepr suggests that in sea bass, leptin is very likely to be involved in the control of food intake, energy reserves and reproduction.


Assuntos
Bass/metabolismo , Receptores para Leptina/metabolismo , Animais , Bass/genética , Ingestão de Alimentos , Europa (Continente) , Feminino , Masculino , Neuroanatomia , Filogenia , Reprodução , Distribuição Tecidual
13.
Artigo em Inglês | MEDLINE | ID: mdl-26419696

RESUMO

The intensive culture of the Senegalese sole (Solea senegalensis) is hampered by the low or null fertilization rates exhibited by the first generation (F1) of reared males. To investigate the regulation of the reproductive processes in this species by the pituitary gonadotropins follicle-stimulating and luteinizing hormones (Fsh and Lh, respectively), we developed a highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) for Lh measurements. Quantification of the Fsh and Lh plasma levels in cultured sole using the Lh ELISA developed here, and a previously developed ELISA for Fsh, indicated that in both males and females circulating Fsh steadily increased during autumn and winter and prior to the major spawning in spring, whereas an Lh surge occurred specifically during spawning. The increase in Fsh was associated with a rise of plasma levels of the steroid hormones testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17ß (E2), but that of Lh was concomitant with a strong decline of the levels of E2 in females and of 11-KT in males, possibly reflecting a rapid steroidogenic shift promoting the final maturation of gametes. Comparison of the plasma levels of gonadotropins and steroids between wild and F1 fish during autumn and spring revealed that F1 males showed significantly lower plasma Lh titres compared to wild males, whereas the levels of T and 11-KT were similar or more elevated in the F1 fish. These data suggest that an impaired Lh secretion during spawning, and perhaps altered Lh-mediated mechanisms in the testis, may be underlying causes for the low reproductive performance of Senegalese sole F1 males.


Assuntos
Linguados/sangue , Linguados/fisiologia , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Reprodução/fisiologia , Animais , Anticorpos/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Gonadotropinas/sangue , Masculino , Proteínas Recombinantes/metabolismo , Padrões de Referência , Reprodutibilidade dos Testes , Esteroides/sangue , Testículo/metabolismo
14.
J Comp Neurol ; 524(1): 176-98, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26105807

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.


Assuntos
Bass/metabolismo , Hormônios Peptídicos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Bass/anatomia & histologia , Bass/genética , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Clonagem Molecular/métodos , Feminino , Imuno-Histoquímica/métodos , Masculino , Dados de Sequência Molecular , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Filogenia , Hipófise/anatomia & histologia , Hipófise/metabolismo , Homologia de Sequência de Aminoácidos
15.
PLoS One ; 10(12): e0144158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26641263

RESUMO

The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG) axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL) alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP) accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.


Assuntos
Bass/metabolismo , Encéfalo/metabolismo , Relógios Circadianos/fisiologia , Proteínas de Peixes/biossíntese , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Animais , Feminino , Masculino , Fotoperíodo
16.
Biol Reprod ; 93(5): 114, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400402

RESUMO

Kisspeptins are key players in the neuroendocrine control of puberty and other reproductive processes in mammals. Several studies have demonstrated that the KISS/GPR54 system is expressed by gonadotrophs, but in vitro studies assessing the direct stimulatory effects of kisspeptin on gonadotropin secretion in the pituitary have provided conflicting results. In this study, we investigated whether kisspeptin directly influences the reproductive function of sea bass pituitary. First, the highly active peptides Kiss1-15 and Kiss2-12 were used to stimulate dispersed sea bass pituitary cells obtained from mature males. Our results show that, first, Kiss2-12 induced luteinizing hormone (Lh) and follicle-stimulating hormone (Fsh) release, whereas Kiss1-15 had no effect on gonadotropin secretion at full spermiation stage. Second, the distribution and nature of Kiss2 and its potential interactions with the gonadotropin-releasing hormone 1 (Gnrh1) system in the pituitary were analyzed using dual fluorescence immunohistochemistry. Kiss2 cells were found in the proximal pars distalis and colocalized with gonadotropin-immunoreactive cells. In summary, our results provide, for the first time in a teleost species, functional and neuroanatomical evidence that Kiss2 may act through different routes to directly modulate the activity of gonadotrophs, either as a hypophysiotropic neuropeptide or as an autocrine/paracrine factor.


Assuntos
Bass/metabolismo , Hormônio Foliculoestimulante/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Hipófise/metabolismo , Animais , Comunicação Autócrina , Células Cultivadas , Hormônio Foliculoestimulante/biossíntese , Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Luteinizante/biossíntese , Masculino , Comunicação Parácrina
17.
Gen Comp Endocrinol ; 221: 42-53, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26172577

RESUMO

Puberty is the process by which an immature animal acquires the ability to reproduce for the first time; its onset occurs soon after sexual differentiation and is characterized by the beginning of gametogenesis in both sexes. Here we present new insights on when and how the onset of puberty occurs in male European sea bass, its dependence on reaching a critical size, and how it can be controlled by photoperiod, revealing the existence of a photolabile period with important applications in aquaculture. Regarding size, apparently only European sea bass above a certain size threshold attain the ability to carry out gametogenesis during their first year of life, while their smaller counterparts fail to do so. This could imply that fish need to achieve an optimal threshold of hormone production, particularly from the kisspeptin/Gnrh/Gth systems, in order to initiate and conclude puberty. However, a long-term restricted feeding regime during the second year of life did not prevent the onset of puberty, thus suggesting that the fish are able to maintain the reproductive function, even at the expense of other functions. Finally, the study of daily hormonal rhythms under different photoperiod regimes revealed the equivalence between their core values and those of seasonal rhythms, in such a way that the daily rhythms could be considered as the functional units of the seasonal rhythms.


Assuntos
Bass/fisiologia , Maturidade Sexual/fisiologia , Animais , Ritmo Circadiano/efeitos da radiação , Sistema Endócrino/metabolismo , Feminino , Masculino , Fotoperíodo , Diferenciação Sexual/efeitos da radiação , Maturidade Sexual/efeitos da radiação
18.
Reproduction ; 150(3): 227-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26047834

RESUMO

Two forms of kiss gene (kiss1 and kiss2) have been described in the teleost sea bass. This study assesses the cloning and characterization of two Kiss receptor genes, namely kissr2 and kissr3 (known as gpr54-1b and gpr54-2b, respectively), and their signal transduction pathways in response to Kiss1 and Kiss2 peptides. Phylogenetic and synteny analyses indicate that these paralogs originated by duplication of an ancestral gene before teleost specific duplication. The kissr2 and kissr3 mRNAs encode proteins of 368 and 378 amino acids, respectively, and share 53.1% similarity in amino acid sequences. In silico analysis of the putative promoter regions of the sea bass Kiss receptor genes revealed conserved flanking regulatory sequences among teleosts. Both kissr2 and kissr3 are predominantly expressed in brain and gonads of sea bass, medaka and zebrafish. In the testis, the expression levels of sea bass kisspeptins and Kiss receptors point to a significant variation during the reproductive cycle. In vitro functional analyses revealed that sea bass Kiss receptor signals are transduced both via the protein kinase C and protein kinase A pathway. Synthetic sea bass Kiss1-15 and Kiss2-12 peptides activated Kiss receptors with different potencies, indicating a differential ligand selectivity. Our data suggest that Kissr2 and Kissr3 have a preference for Kiss1 and Kiss2 peptides, respectively, thus providing the basis for future studies aimed at establishing their physiologic roles in sea bass.


Assuntos
Bass/metabolismo , Proteínas de Peixes/metabolismo , Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Bass/genética , Células CHO , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Kisspeptinas/genética , Ligantes , Masculino , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Filogenia , Regiões Promotoras Genéticas , Proteína Quinase C/metabolismo , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Reprodução , Transdução de Sinais , Transfecção
19.
Gen Comp Endocrinol ; 221: 31-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26002037

RESUMO

Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.


Assuntos
Bass/metabolismo , Biotecnologia/métodos , Gonadotropinas/metabolismo , Animais , Bass/genética , Feminino , Gônadas/metabolismo , Masculino , Técnicas de Transferência Nuclear , Processos de Determinação Sexual
20.
Biol Reprod ; 92(3): 70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25609835

RESUMO

Some teleost species, including European sea bass, harbor two different kisspeptin coding genes: kiss1 and kiss2. Both genes are expressed in the brain, but their differential roles in the central control of fish reproduction are only beginning to be elucidated. In this study, we have examined the effects of intracerebroventricular injections of the highly active sea bass peptides Kiss1-15 and Kiss2-12 on spermiating male sea bass. Physiological saline, Kiss1-15, or Kiss2-12 was injected into the third ventricle. To establish the gene expression cascade involved in the action of kisspeptins, the expression of the two sea bass kisspeptin receptor genes (kiss1r and kiss2r) and the three sea bass Gnrh genes (gnrh1, gnrh2, and gnrh3) were analyzed in the forebrain-midbrain and the hypothalamus. In addition, the protein levels of hypothalamic and pituitary Gnrh1 were measured. Blood samples were collected at different times after injection to analyze the effects of kisspeptins on the release of gonadotropins (Lh and Fsh) and androgens (testosterone and 11-ketotestosterone). The present results provide the first evidence that the effects of Kiss2 on central regulation of reproductive function involve the neuroendocrine areas of the forebrain-midbrain in teleost fish. The marked effect of Kiss2 on kiss2r and gnrh1 expression in the forebrain-midbrain and on Gnrh1 release suggest that this neuronal system is involved in the neuroendocrine regulation of gonadotroph activity. This hypothesis was confirmed by a surge of plasma Lh in response to Kiss2, which presumably has a strong stimulatory effect on testosterone release, and thus on sperm quality parameters.


Assuntos
Bass/fisiologia , Gonadotrofos/fisiologia , Hormônio Liberador de Gonadotropina/fisiologia , Kisspeptinas/fisiologia , Mesencéfalo/fisiologia , Sistemas Neurossecretores/fisiologia , Prosencéfalo/fisiologia , Transdução de Sinais/fisiologia , Animais , Hormônio Foliculoestimulante/fisiologia , Hormônio Luteinizante/fisiologia , Masculino , Reprodução/fisiologia , Análise do Sêmen , Espermatozoides/fisiologia , Testosterona/análogos & derivados , Testosterona/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA