Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(20)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35189602

RESUMO

With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9with Sr doping on non-magnetic Ba2+ion sites. The results show that Ba2.87Sr0.13CoSb2O9exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24µB/Co; (iii) a series of spin state transitions for bothH∥ab-plane andH∥c-axis. ForH∥ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.

2.
Phys Rev Lett ; 126(20): 207201, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110224

RESUMO

We present a combined experimental and theoretical study of the mineral atacamite Cu_{2}Cl(OH)_{3}. Density-functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Magnetic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe a plateaulike magnetization at about M_{sat}/2. Based on complementary theoretical approaches, we show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead, we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D network of weakly coupled sawtooth chains that form giant moments.

3.
Proc Natl Acad Sci U S A ; 117(38): 23467-23476, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32887802

RESUMO

The temperature-dependent evolution of the Kondo lattice is a long-standing topic of theoretical and experimental investigation and yet it lacks a truly microscopic description of the relation of the basic f-c hybridization processes to the fundamental temperature scales of Kondo screening and Fermi-liquid lattice coherence. Here, the temperature dependence of f-c hybridized band dispersions and Fermi-energy f spectral weight in the Kondo lattice system CeCoIn5 is investigated using f-resonant angle-resolved photoemission spectroscopy (ARPES) with sufficient detail to allow direct comparison to first-principles dynamical mean-field theory (DMFT) calculations containing full realism of crystalline electric-field states. The ARPES results, for two orthogonal (001) and (100) cleaved surfaces and three different f-c hybridization configurations, with additional microscopic insight provided by DMFT, reveal f participation in the Fermi surface at temperatures much higher than the lattice coherence temperature, [Formula: see text] K, commonly believed to be the onset for such behavior. The DMFT results show the role of crystalline electric-field (CEF) splittings in this behavior and a T-dependent CEF degeneracy crossover below [Formula: see text] is specifically highlighted. A recent ARPES report of low T Luttinger theorem failure for CeCoIn5 is shown to be unjustified by current ARPES data and is not found in the theory.

4.
Nat Commun ; 8(1): 99, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740123

RESUMO

The thermal and magnetic properties of uranium dioxide, a prime nuclear fuel and thoroughly studied actinide material, remain a long standing puzzle, a result of strong coupling between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a 3-k non-collinear antiferromagnetic structure and multidomain Jahn-Teller distortions, likely related to its anisotropic thermal properties. Here we show that single crystals of uranium dioxide subjected to strong magnetic fields along threefold axes in the magnetic state exhibit the abrupt appearance of positive linear magnetostriction, leading to a trigonal distortion. Upon reversal of the field the linear term also reverses sign, a hallmark of piezomagnetism. A switching phenomenon occurs at ±18 T, which persists during subsequent field reversals, demonstrating a robust magneto-elastic memory that makes uranium dioxide the hardest piezomagnet known. A model including a strong magnetic anisotropy, elastic, Zeeman, Heisenberg exchange, and magnetoelastic contributions to the total energy is proposed.The nuclear fuel uranium dioxide is of intrinsic interest due to its industrial applications but it also exhibits intriguing electronic and magnetic properties. Here, the authors demonstrate how its complex magnetic structure and interactions give rise to a strong piezomagnetic effect.

5.
Phys Rev Lett ; 115(13): 137201, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451580

RESUMO

We report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni_{3}TeO_{6} that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 µC/cm^{2}, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. The resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.

6.
Phys Rev Lett ; 112(1): 017207, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24483929

RESUMO

We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at µ0H≈40 T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field.

7.
J Phys Condens Matter ; 25(21): 216008, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23649209

RESUMO

We study the strongly anisotropic quasi-one-dimensional S = 1 quantum magnet NiCl2·4SC(NH2)2 using elastic and inelastic neutron scattering. We demonstrate that a magnetic field splits the excited doublet state and drives the lower doublet state to zero energy at a critical field Hc1. For Hc1 < H < Hc2, where Hc2 indicates the transition to a fully magnetized state, three-dimensional magnetic order is established with the AF moment perpendicular to the magnetic field. We mapped the temperature/magnetic field phase diagram, and we find that the total ordered magnetic moment reaches m(tot) = 2.1 µB at the field µ(0)H = 6 T and is thus close to the saturation value of the fully ordered moment. We study the magnetic spin dynamics in the fully magnetized state for H > Hc2, and we demonstrate the presence of an AF interaction between Ni(2+) on the two interpenetrating sublattices. In the antiferromagnetically ordered phase, the spin-waves that develop from the lower-energy doublet are split into two modes. This is most likely the result of the presence of the AF interaction between the interpenetrating lattices.

8.
Phys Rev Lett ; 106(3): 037203, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21405291

RESUMO

Several quantum paramagnets exhibit magnetic-field-induced quantum phase transitions to an antiferromagnetic state that exists for H c1 ≤ H ≤ H c2. For some of these compounds, there is a significant asymmetry between the low- and high-field transitions. We present specific heat and thermal conductivity measurements in NiCl2-4SC(NH2)2, together with calculations which show that the asymmetry is caused by a strong mass renormalization due to quantum fluctuations for H ≤ H c1 that are absent for H ≥ H c2. We argue that the enigmatic lack of asymmetry in thermal conductivity is due to a concomitant renormalization of the impurity scattering.

9.
Phys Rev Lett ; 101(18): 187205, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999861

RESUMO

In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl2-4SC(NH2)_{2} using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H_{c1} approximately 2 T and a upper critical field H_{c2} approximately 12 T. The results show a power-law temperature dependence of the phase transition line H_{c1}(T)-H_{c1}(0)=aT;{alpha} with alpha=1.47+/-0.10 and H_{c1}(0)=2.053 T, consistent with the 3D BEC universality class. Near H_{c2}, a kink was found in the phase boundary at approximately 150 mK.

10.
Phys Rev Lett ; 98(4): 047205, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17358808

RESUMO

NiCl(2)-4SC(NH(2))(2) (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)10.1103/PhysRevLett.96.077204], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9 K, J(c) = 2.2 K, and J(a,b) = 0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization, and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained.

11.
Phys Rev Lett ; 96(18): 189703; author reply 189704, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712410
12.
Phys Rev Lett ; 96(7): 077204, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606135

RESUMO

It has recently been suggested that the organic compound NiCl2-4SC(NH2)2 (DTN) undergoes field-induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S = 1 spins exhibit three-dimensional XY antiferromagnetism above a critical field H(c1) approximately 2 T. The spin fluid can be described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and magnetocaloric effect measurements. Our results show that the field-temperature phase boundary approaches a power-law H - H(c1) proportional variant T(alpha)(c) near the quantum critical point, with an exponent that is consistent with the 3D BEC universal value of alpha = 1.5.

13.
Phys Rev Lett ; 94(4): 046401, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783577

RESUMO

The URu2-xRexSi2 system exhibits ferromagnetic order for Re concentrations 0.3 < x < or =1.0. Non-Fermi-liquid (NFL) behavior is observed in the specific heat for 0.15< or = x< or =0.6 [C/T proportional to, -lnT (or T(-0.1))], and also in the power-law T dependence of the electrical resistivity [rhoT proportional to, Tn] with n<2 for 0.15< or = x <0.8, at low T, providing strong evidence that the NFL behavior persists within the ferromagnetic phase. Furthermore, the deviation of the physical properties of URu2-xRexSi2 from Fermi-liquid behavior is most pronounced at the ferromagnetic quantum critical point, and the NFL behavior found in the ferromagnetic phase may be consistent with the Griffiths-McCoy phase model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA