Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37497639

RESUMO

Over the past 30 years, a community of scientists has pieced together every base pair of the human reference genome from telomere to telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under "normal" circumstances, omitting any chromosome(s) from an analysis of the human genome would be a cause for concern, with the exception being sex chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share 3 regions of high-sequence identity (∼98-100%), which, along with the unique transmission patterns of the sex chromosomes, introduce technical artifacts in genomic analyses. However, the human X chromosome bears numerous important genes, including more "immune response" genes than any other chromosome, which makes its exclusion irresponsible when sex differences across human diseases are widespread. To better characterize the possible effect of the inclusion/exclusion of the X chromosome on variants called, we conducted a pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and the sex chromosome complement-aware reference genome. We compared the quality of variant calling, expression quantification, and allele-specific expression using these 2 reference genome versions across 50 human samples from the Genotype-Tissue Expression consortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls, allowing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex chromosomes from empirical and clinical genomics studies.


Assuntos
Genoma Humano , Cromossomos Sexuais , Humanos , Feminino , Masculino , Projetos Piloto , Cromossomos Sexuais/genética , Genômica , Cromossomo X
2.
bioRxiv ; 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36865318

RESUMO

Over the past 30 years, a community of scientists have pieced together every base pair of the human reference genome from telomere-to-telomere. Interestingly, most human genomics studies omit more than 5% of the genome from their analyses. Under 'normal' circumstances, omitting any chromosome(s) from analysis of the human genome would be reason for concern-the exception being the sex chromosomes. Sex chromosomes in eutherians share an evolutionary origin as an ancestral pair of autosomes. In humans, they share three regions of high sequence identity (~98-100%), which-along with the unique transmission patterns of the sex chromosomes-introduce technical artifacts into genomic analyses. However, the human X chromosome bears numerous important genes-including more "immune response" genes than any other chromosome-which makes its exclusion irresponsible when sex differences across human diseases are widespread. To better characterize the effect that including/excluding the X chromosome may have on variants called, we conducted a pilot study on the Terra cloud platform to replicate a subset of standard genomic practices using both the CHM13 reference genome and sex chromosome complement-aware (SCC-aware) reference genome. We compared quality of variant calling, expression quantification, and allele-specific expression using these two reference genome versions across 50 human samples from the Genotype-Tissue-Expression consortium annotated as females. We found that after correction, the whole X chromosome (100%) can generate reliable variant calls-allowing for the inclusion of the whole genome in human genomics analyses as a departure from the status quo of omitting the sex chromosomes from empirical and clinical genomics studies.

3.
Cell Genom ; 2(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36452119

RESUMO

Genome in a Bottle benchmarks are widely used to help validate clinical sequencing pipelines and develop variant calling and sequencing methods. Here we use accurate linked and long reads to expand benchmarks in 7 samples to include difficult-to-map regions and segmental duplications that are challenging for short reads. These benchmarks add more than 300,000 SNVs and 50,000 insertions or deletions (indels) and include 16% more exonic variants, many in challenging, clinically relevant genes not covered previously, such as PMS2. For HG002, we include 92% of the autosomal GRCh38 assembly while excluding regions problematic for benchmarking small variants, such as copy number variants, that should not have been in the previous version, which included 85% of GRCh38. It identifies eight times more false negatives in a short read variant call set relative to our previous benchmark. We demonstrate that this benchmark reliably identifies false positives and false negatives across technologies, enabling ongoing methods development.

4.
Science ; 376(6588): eabl3533, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35357935

RESUMO

Compared to its predecessors, the Telomere-to-Telomere CHM13 genome adds nearly 200 million base pairs of sequence, corrects thousands of structural errors, and unlocks the most complex regions of the human genome for clinical and functional study. We show how this reference universally improves read mapping and variant calling for 3202 and 17 globally diverse samples sequenced with short and long reads, respectively. We identify hundreds of thousands of variants per sample in previously unresolved regions, showcasing the promise of the T2T-CHM13 reference for evolutionary and biomedical discovery. Simultaneously, this reference eliminates tens of thousands of spurious variants per sample, including reduction of false positives in 269 medically relevant genes by up to a factor of 12. Because of these improvements in variant discovery coupled with population and functional genomic resources, T2T-CHM13 is positioned to replace GRCh38 as the prevailing reference for human genetics.


Assuntos
Variação Genética , Genoma Humano , Genômica/normas , Análise de Sequência de DNA/normas , Humanos , Padrões de Referência
5.
Genome Biol ; 22(1): 347, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930391

RESUMO

BACKGROUND: Genomic structural variations (SV) are important determinants of genotypic and phenotypic changes in many organisms. However, the detection of SV from next-generation sequencing data remains challenging. RESULTS: In this study, DNA from a Chinese family quartet is sequenced at three different sequencing centers in triplicate. A total of 288 derivative data sets are generated utilizing different analysis pipelines and compared to identify sources of analytical variability. Mapping methods provide the major contribution to variability, followed by sequencing centers and replicates. Interestingly, SV supported by only one center or replicate often represent true positives with 47.02% and 45.44% overlapping the long-read SV call set, respectively. This is consistent with an overall higher false negative rate for SV calling in centers and replicates compared to mappers (15.72%). Finally, we observe that the SV calling variability also persists in a genotyping approach, indicating the impact of the underlying sequencing and preparation approaches. CONCLUSIONS: This study provides the first detailed insights into the sources of variability in SV identification from next-generation sequencing and highlights remaining challenges in SV calling for large cohorts. We further give recommendations on how to reduce SV calling variability and the choice of alignment methodology.


Assuntos
Variação Estrutural do Genoma , Genômica/métodos , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequência de Bases , Viés , Mapeamento Cromossômico , Análise de Sequência de DNA
6.
Gigascience ; 9(12)2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33347570

RESUMO

BACKGROUND: Structural variants (SVs) are critical contributors to genetic diversity and genomic disease. To predict the phenotypic impact of SVs, there is a need for better estimates of both the occurrence and frequency of SVs, preferably from large, ethnically diverse cohorts. Thus, the current standard approach requires the use of short paired-end reads, which remain challenging to detect, especially at the scale of hundreds to thousands of samples. FINDINGS: We present Parliament2, a consensus SV framework that leverages multiple best-in-class methods to identify high-quality SVs from short-read DNA sequence data at scale. Parliament2 incorporates pre-installed SV callers that are optimized for efficient execution in parallel to reduce the overall runtime and costs. We demonstrate the accuracy of Parliament2 when applied to data from NovaSeq and HiSeq X platforms with the Genome in a Bottle (GIAB) SV call set across all size classes. The reported quality score per SV is calibrated across different SV types and size classes. Parliament2 has the highest F1 score (74.27%) measured across the independent gold standard from GIAB. We illustrate the compute performance by processing all 1000 Genomes samples (2,691 samples) in <1 day on GRCH38. Parliament2 improves the runtime performance of individual methods and is open source (https://github.com/slzarate/parliament2), and a Docker image, as well as a WDL implementation, is available. CONCLUSION: Parliament2 provides both a highly accurate single-sample SV call set from short-read DNA sequence data and enables cost-efficient application over cloud or cluster environments, processing thousands of samples.


Assuntos
Genômica , Software , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência
7.
Nat Commun ; 11(1): 4794, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963235

RESUMO

Most human genomes are characterized by aligning individual reads to the reference genome, but accurate long reads and linked reads now enable us to construct accurate, phased de novo assemblies. We focus on a medically important, highly variable, 5 million base-pair (bp) region where diploid assembly is particularly useful - the Major Histocompatibility Complex (MHC). Here, we develop a human genome benchmark derived from a diploid assembly for the openly-consented Genome in a Bottle sample HG002. We assemble a single contig for each haplotype, align them to the reference, call phased small and structural variants, and define a small variant benchmark for the MHC, covering 94% of the MHC and 22368 variants smaller than 50 bp, 49% more variants than a mapping-based benchmark. This benchmark reliably identifies errors in mapping-based callsets, and enables performance assessment in regions with much denser, complex variation than regions covered by previous benchmarks.


Assuntos
Diploide , Complexo Principal de Histocompatibilidade/genética , Benchmarking , Linhagem Celular , Variação Genética , Genoma Humano , Haplótipos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA