Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 162: 631-649, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30476826

RESUMO

Using the available structural information of the chemokine receptor CXCR4, we present hit finding and hit exploration studies that make use of virtual fragment screening, design, synthesis and structure-activity relationship (SAR) studies. Fragment 2 was identified as virtual screening hit and used as a starting point for the exploration of 31 N-substituted piperidin-4-yl-methanamine derivatives to investigate and improve the interactions with the CXCR4 binding site. Additionally, subtle structural ligand changes lead to distinct interactions with CXCR4 resulting in a full to partial displacement of CXCL12 binding and competitive and/or non-competitive antagonism. Three-dimensional quantitative structure-activity relationship (3D-QSAR) and binding model studies were used to identify important hydrophobic interactions that determine binding affinity and indicate key ligand-receptor interactions.


Assuntos
Metilaminas/farmacologia , Relação Quantitativa Estrutura-Atividade , Receptores CXCR4/antagonistas & inibidores , Sítios de Ligação , Quimiocina CXCL12/metabolismo , Ligantes , Metilaminas/síntese química , Modelos Moleculares , Fragmentos de Peptídeos , Piperidinas/química , Ligação Proteica
2.
Biochim Biophys Acta ; 944(3): 351-8, 1988 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-2460139

RESUMO

Calcium uptake into ejaculated ram spermatozoa is highly enhanced by the addition of extracellular phosphate. Under identical conditions, extracellular calcium stimulates the uptake of phosphate by the cells. Both calcium and phosphate uptake are comparably inhibited by the sulfhydryl reagent mersalyl. The I50 was found to be 6.36 and 10.14 nmol mersalyl per mg protein for phosphate and calcium uptake, respectively. Calcium uptake is inhibited by mersalyl whether phosphate is present or not. Extracellular fructose causes a 5-fold increase in calcium uptake. When fructose and phosphate are present in the cell's medium, there is an additive effect, which indicates that two independent systems are involved in calcium transport into the cell. Ruthenium red, which blocks Ca2+ transport into the mitochondria, causes 70% and 95% inhibition of calcium uptake in the absence or in the presence of fructose, respectively. Ruthenium red does not affect phosphate uptake unless calcium was present in the incubation medium. The stimulatory effect of fructose upon calcium uptake can be mimicked by L-lactate and can be inhibited by the glycolytic inhibitor 2-deoxyglucose. Fructose and L-lactate stimulate mitochondrial respiration in a comparable way. Oligomycin, which inhibits mitochondrial ATP synthesis, does not inhibit Ca2+ uptake. This indicates that ATP is not involved in the mechanism by which mitochondrial respiration stimulates Ca2+ uptake. The calcium channel blocker, verapamil, inhibits Ca2+ uptake in the presence or absence of extracellular phosphate. The phosphate-dependent calcium transport mechanism is more sensitive to verapamil than is the phosphate-independent transporter. In summary, the data indicate that the plasma membrane of mammalian spermatozoa contains a calcium/phosphate symporter, a phosphate-independent calcium carrier and a calcium-independent phosphate carrier.


Assuntos
Cálcio/metabolismo , Fosfatos/metabolismo , Espermatozoides/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Desoxiglucose/farmacologia , Masculino , Mersalil/farmacologia , Oligomicinas/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Rutênio Vermelho/farmacologia , Ovinos , Motilidade dos Espermatozoides/efeitos dos fármacos , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA