Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Int ; 184: 108474, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350256

RESUMO

Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.


Assuntos
Rotas de Resultados Adversos , Modelos Biológicos , Animais , Humanos , Toxicocinética , Monitoramento Biológico , Medição de Risco/métodos
2.
PLoS Comput Biol ; 19(12): e1011668, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096152

RESUMO

This work presents 10 rules that provide guidance and recommendations on how to start up discussions around the implementation of the FAIR (Findable, Accessible, Interoperable, Reusable) principles and creation of standardised ways of working. These recommendations will be particularly relevant if you are unsure where to start, who to involve, what the benefits and barriers of standardisation are, and if little work has been done in your discipline to standardise research workflows. When applied, these rules will support a more effective way of engaging the community with discussions on standardisation and practical implementation of the FAIR principles.

3.
Front Toxicol ; 5: 1116707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342468

RESUMO

The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.

4.
Environ Int ; 170: 107610, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356553

RESUMO

High-quality and comprehensive exposure-related data are critical for different decision contexts, including environmental and human health monitoring, and chemicals risk assessment and management. However, exposure-related data are currently scattered, frequently of unclear quality and structure, not readily accessible, and stored in various-partly overlapping-data repositories, leading to inefficient and ineffective data usage in Europe and globally. We propose strategic guidance for an integrated European exposure data production and management framework for use in science and policy, building on current and future data analysis and digitalization trends. We map the existing exposure data landscape to requirements for data analytics and repositories across European policies and regulations. We further identify needs and ways forward for improving data generation, sharing, and usage, and translate identified needs into an operational action plan for European and global advancement of exposure data for policies and regulations. Identified key areas of action are to develop consistent exposure data standards and terminology for data production and reporting, increase data transparency and availability, enhance data storage and related infrastructure, boost automation in data management, increase data integration, and advance tools for innovative data analysis. Improving and streamlining exposure data generation and uptake into science and policy is crucial for the European Chemicals Strategy for Sustainability and European Digital Strategy, in line with EU Data policies on data management and interoperability.


Assuntos
Ciência de Dados , Humanos , Europa (Continente)
5.
Environ Int ; 170: 107555, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244229

RESUMO

Exposure science is an emerging and rapidly growing field dedicated to all aspects concerning the contact between chemical, biological, physical or psycho-social stressors and human and ecological receptors. With that, exposure science plays a central role in protecting human and ecosystem health, and contributes to the global transition towards a green and sustainable society. In Europe, however, exposure science is currently not sufficiently recognised as a scientific field, resulting in inefficient uptake into policies. In response, the wider European exposure science community developed elements and actions under the auspices of the Europe Regional Chapter of the International Society of Exposure Science (ISES Europe), for identified priority areas, namely education, exposure models, exposure data, human biomonitoring, and policy uptake. In the present document, we synthesize these strategic elements into an overarching 'European Exposure Science Strategy 2020-2030', following three strategic objectives that focus on acknowledging exposure science as an independent and interconnected field, harmonizing approaches and tools across regulations, and exploring collaboration, education and funding mechanisms. To operationalise this strategy, we present concrete key actions and propose initiatives and funding options for advancing the underlying science, cultivating broader education and cross-sector exposure knowledge transfer, and fostering effective uptake of exposure information into policy. We aim at anchoring European efforts in the global exposure science context, with a special focus on the interface between scientific advancements, application in decision support, and dissemination and training. This will help to develop exposure science as a strong scientific field with the ultimate goal to successfully assess and manage various stressors across sectors and geographic scales.


Assuntos
Ecossistema , Humanos , Europa (Continente) , União Europeia
6.
Artigo em Inglês | MEDLINE | ID: mdl-36231722

RESUMO

BACKGROUND: Residents of a large area in the Veneto Region (Northeastern Italy) were exposed to drinking water contaminated by perfluoroalkyl substances (PFAS) for decades. While exposure to PFAS has been consistently associated with elevated serum lipids, combined exposures to multiple PFASs have been poorly investigated. Utilising different statistical approaches, we examine the association between chemical mixtures and lipid parameters. METHODS: Cross-sectional data from the regional health surveillance program (34,633 individuals aged 20-64 years) were used to examine the combined effects of PFAS mixture (Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluorohexane sulfonate (PFHxS)) on total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Weighted Quantile Sum (WQS) regression, Quantile-based G-computation (Q-Gcomp) and Bayesian Kernel Machine Regression (BKMR) were used based on their ability to handle highly correlated chemicals. RESULTS: We observed that each quartile increase in the WQS index was associated with an increase in the levels of TC (ß: 4.09, 95% CI: 3.47-4.71), HDL-C (ß: 1.13, 95% CI: 0.92-1.33) and LDL-C (ß: 3.14, 95% CI: 2.65-3.63). Q-Gcomp estimated that a quartile increase in the PFAS mixture was associated with increased TC (ψ: 4.04, 95% CI 3.5-4.58), HDL-C (ψ: 1.07, 95% CI 20.87-1.27) and LDL-C (ψ: 2.71, 95% CI 2.23-3.19). In the BKMR analysis, the effect of PFAS mixture on serum lipids increased significantly when their concentrations were at their 75th percentiles or above, compared to those at their 50th percentile. All methods revealed a major contribution of PFOS and PFNA, although the main exposure was due to PFOA. We found suggestive evidence that associations varied when stratified by gender. CONCLUSIONS: The PFAS mixture was positively associated with lipid parameters, regardless of the applied method. Very similar results obtained from the three methods may be attributed to the linear positive association with the outcomes and no interaction between each PFAS.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Poluentes Ambientais , Fluorocarbonos , Adulto , Teorema de Bayes , Caprilatos , HDL-Colesterol , LDL-Colesterol , Estudos Transversais , Fluorocarbonos/toxicidade , Humanos , Lipídeos
7.
Environ Int ; 168: 107476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067553

RESUMO

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

8.
Toxics ; 10(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36006128

RESUMO

Human exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with numerous adverse health effects, depending on various factors such as the conditions of exposure (dose/concentration, duration, route of exposure, etc.) and characteristics associated with the exposed target (e.g., age, sex, ethnicity, health status, and genetic predisposition). The biological mechanisms by which PFAS might affect systems are largely unknown. To support the risk assessment process, AOP-helpFinder, a new artificial intelligence tool, was used to rapidly and systematically explore all available published information in the PubMed database. The aim was to identify existing associations between PFAS and metabolic health outcomes that may be relevant to support building adverse outcome pathways (AOPs). The collected information was manually organized to investigate linkages between PFAS exposures and metabolic health outcomes, including dyslipidemia, hypertension, insulin resistance, and obesity. Links between PFAS exposure and events from the existing metabolic-related AOPs were also retrieved. In conclusion, by analyzing dispersed information from the literature, we could identify some associations between PFAS exposure and components of existing AOPs. Additionally, we identified some linkages between PFAS exposure and metabolic outcomes for which only sparse information is available or which are not yet present in the AOP-wiki database that could be addressed in future research.

9.
Environ Int ; 168: 107477, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998412

RESUMO

BACKGROUND: Evaluating and managing exposures to chemical, physical and biological stressors, which frequently interplay with psychological stressors as well as social and behavioural aspects, is crucial for protecting human and environmental health and transitioning towards a sustainable future. Advances in our understanding of exposure rely on input from well-trained exposure scientists. However, no education programmes in Europe are currently explicitly dedicated to cover the broader range of exposure science approaches, applications, stressors and receptors. OBJECTIVE: To address this challenge, a curriculum is needed that yields credible, well-defined career pathways in exposure science. METHODS: Needs and conditions for advancing exposure science education in Europe were identified. As a starting point for a way forward, harmonised learning outcomes for exposure science were defined at each level of the European Qualifications Framework. The course programme coordinators were recruited for three varying courses, with respect to the course level and the proportion of the curriculum dedicated to exposure science. These courses were assessed via our systematic course review procedure. Finally, strategic objectives and actions are proposed to build exposure science education programmes. RESULTS: The ISES Europe 'Education, Training and Communication' expert working group developed a framework for creating a viable exposure science curriculum. Harmonised learning outcomes were structured under eight learning levels, categorised by knowledge, skills and competence. Illustrative case studies demonstrated how education providers integrated these learning outcomes for their educational context and aligned the overall exposure science curriculum. CONCLUSIONS: The international recognition and adoption of exposure science education will enable advances in addressing global exposure science challenges for various stressors, from behavioural aspects from individual to population scale, and effective communication between exposure scientists and relevant stakeholders and policy makers, as part of the European Exposure Science Strategy 2020-2030.

10.
J Expo Sci Environ Epidemiol ; 32(4): 499-512, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35918394

RESUMO

Exposure models are essential in almost all relevant contexts for exposure science. To address the numerous challenges and gaps that exist, exposure modelling is one of the priority areas of the European Exposure Science Strategy developed by the European Chapter of the International Society of Exposure Science (ISES Europe). A strategy was developed for the priority area of exposure modelling in Europe with four strategic objectives. These objectives are (1) improvement of models and tools, (2) development of new methodologies and support for understudied fields, (3) improvement of model use and (4) regulatory needs for modelling. In a bottom-up approach, exposure modellers from different European countries and institutions who are active in the fields of occupational, population and environmental exposure science pooled their expertise under the umbrella of the ISES Europe Working Group on exposure models. This working group assessed the state-of-the-art of exposure modelling in Europe by developing an inventory of exposure models used in Europe and reviewing the existing literature on pitfalls for exposure modelling, in order to identify crucial modelling-related strategy elements. Decisive actions were defined for ISES Europe stakeholders, including collecting available models and accompanying information in a living document curated and published by ISES Europe, as well as a long-term goal of developing a best-practices handbook. Alongside these actions, recommendations were developed and addressed to stakeholders outside of ISES Europe. Four strategic objectives were identified with an associated action plan and roadmap for the implementation of the European Exposure Science Strategy for exposure modelling. This strategic plan will foster a common understanding of modelling-related methodology, terminology and future research in Europe, and have a broader impact on strategic considerations globally.


Assuntos
Exposição Ambiental , Europa (Continente) , Humanos
12.
J Expo Sci Environ Epidemiol ; 32(4): 513-525, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34697409

RESUMO

BACKGROUND: A scientific framework on exposure science will boost the multiuse of exposure knowledge across EU chemicals-related policies and improve risk assessment, risk management and communication across EU safety, security and sustainability domains. OBJECTIVE: To stimulate public and private actors to align and strengthen the cross-policy adoption of exposure assessment data, methods and tools across EU legislation. METHODS: By mapping and analysing the EU regulatory landscape making use of exposure information, policy and research challenges and key areas of action are identified and translated into opportunities enhancing policy and scientific efficiency. RESULTS: Identified key areas of actions are to develop a common scientific exposure assessment framework, supported by baseline acceptance criteria and a shared knowledge base enhancing exchangeability and acceptability of exposure knowledge within and across EU chemicals-related policies. Furthermore, such framework will improve communication and management across EU chemical safety, security and sustainability policies comprising sourcing, manufacturing and global trade of goods and waste management. In support of building such a common framework and its effective use in policy and industry, exposure science innovation needs to be better embedded along the whole policymaking cycle, and be integrated into companies' safety and sustainability management systems. This will help to systemically improve regulatory risk management practices. SIGNIFICANCE: This paper constitutes an important step towards the implementation of the EU Green Deal and its underlying policy strategies, such as the Chemicals Strategy for Sustainability.


Assuntos
Políticas , Humanos , Medição de Risco
13.
Rev Environ Health ; 37(2): 211-228, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34036763

RESUMO

Exposure to per- and polyfluoroalkyl substances (PFAS), ubiquitous persistent environmental contaminants, has led to substantial global concern due to their potential environmental and human health effects. Several epidemiological studies have assessed the possible association between PFAS exposure and risk of metabolic syndrome (MetS), however, the results are ambiguous. The aim of this study was to assess the current human epidemiologic evidence on the association between exposure to PFAS and MetS. We performed a systematic search strategy using three electronic databases (PubMed, Scopus, and Web of Science) for relevant studies concerning the associations of PFAS with MetS and its clinical relevance from inception until January 2021. We undertook meta-analyses where there were five or more studies with exposure and outcomes assessments that were reasonably comparable. The pooled odd ratios (ORs) were calculated using random effects models and heterogeneity among studies was assessed by I2 index and Q test. A total of 12 cross-sectional studies (10 studies on the general population and two studies in the occupational settings) investigated the association between PFAS exposure and MetS. We pooled data from seven studies on the general population for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) and five studies for perfluorohexanesulfonate (PFHxS) and perfluorononanoic acid (PFNA). Predominately, most studies reported no statistically significant association between concentrations of PFAS and MetS. In the meta-analysis, the overall measure of effect was not statistically significant, showing no evidence of an association between concentrations of PFOA, PFOS, PFNA, and PFHxS and the risk of MetS. Based on the results of the meta-analysis, current small body of evidence does not support association between PFAS and MetS. However, due to limited number of studies and substantial heterogeneity, results should be interpreted with caution. Further scrutinizing cohort studies are needed to evaluate the association between various and less well-known PFAS substances and their mixture with MetS and its components in both adults and children in different settings.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Síndrome Metabólica , Adulto , Criança , Estudos Transversais , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Humanos , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/epidemiologia
14.
Environ Res ; 205: 112565, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915031

RESUMO

BACKGROUND: Humans are exposed to several per- and polyfluoroalkyl substances (PFAS) daily; however, most previous studies have focused on individual PFAS. Although attention to effects of exposure to mixtures of PFAS has grown in recent years, there is no consensus on the appropriate statistical methods that can be used to assess their combined effect on human health. OBJECTIVES: We aim to perform a comprehensive review of the statistical methods used in the existing studies which evaluate the association between exposure to mixtures of PFAS and any adverse human health effect. METHODS: The online databases PubMed, Embase and Scopus were searched for eligible studies, published during the last ten years (last search performed on April 08, 2021). Covidence software was used by two different reviewers to perform a title/abstract screening, followed by a full text revision of the selected papers. RESULTS: A total of 3640 papers were identified, and after the screening process, 53 papers were included in the current review. Most of the studies were published between 2019 and 2021 and were conducted mainly in North America and Europe; more than half of the studies (28 out of 53) were conducted on mother and child pairs. WQS (Weighted Quantile Sum) Regression and BKMR (Bayesian Kernel Machine Regression) were used in 36 out of 53 papers to model mixtures' effects. Health outcomes included in the studies are immunotoxicity (n = 8), fetal development (n = 7), neurodevelopment (n = 9), reproductive hormones (n = 6), thyroid hormones (n = 7), outcomes related to metabolic pathways (n = 16). CONCLUSION: Studies on human exposure to PFAS as complex mixtures and health consequences have substantially increased in the last few years. Based on our findings, we propose that addressing risk from PFAS mixtures will likely require combinations of approaches and implementation of constantly evolving statistical methods. Specific guidelines and tools for quality assessment and publication of mixture observational studies are warranted.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Teorema de Bayes , Criança , Poluentes Ambientais/toxicidade , Europa (Continente) , Fluorocarbonos/toxicidade , Humanos , Hormônios Tireóideos
15.
Int J Hyg Environ Health ; 238: 113826, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34583227

RESUMO

Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily. We argue that an HBM Global Registry Framework (HBM GRF) could be the solution to several of challenges hampering the (re)use of HBM (meta)data. The aim is to develop a global, host-independent HBM registry framework based on the use of harmonised open-access protocol templates from designing, undertaking of an HBM study to the use and possible reuse of the resulting HBM (meta)data. This framework should apply FAIR (Findable, Accessible, Interoperable and Reusable) principles as a core data management strategy to enable the (re)use of HBM (meta)data to its full potential through the data value chain. Moreover, we believe that implementation of FAIR principles is a fundamental enabler for digital transformation within environmental health. The HBM GRF would encompass internationally harmonised and agreed open access templates for HBM study protocols, structured web-based functionalities to deposit, find, and access harmonised protocols of HBM studies. Registration of HBM studies using the HBM GRF is anticipated to increase FAIRness of the resulting (meta)data. It is also considered that harmonisation of existing data sets could be performed retrospectively. As a consequence, data wrangling activities to make data ready for analysis will be minimised. In addition, this framework would enable the HBM (inter)national community to trace new HBM studies already in the planning phase and their results once finalised. The HBM GRF could also serve as a platform enhancing communication between scientists, risk assessors, and risk managers/policy makers. The planned European Partnership for the Assessment of Risk from Chemicals (PARC) work along these lines, based on the experience obtained in previous joint European initiatives. Therefore, PARC could very well bring a first demonstration of first essential functionalities within the development of the HBM GRF.


Assuntos
Monitoramento Biológico , Exposição Ambiental , Exposição Ambiental/análise , Monitoramento Ambiental , Humanos , Sistema de Registros , Estudos Retrospectivos
16.
Artigo em Inglês | MEDLINE | ID: mdl-33572770

RESUMO

BACKGROUND: Studies on the association between perfluoroalkyl substances (PFAS) and metabolic syndrome (MetS) are limited, and results are inconsistent. We aimed to examine the associations between PFAS serum levels and the prevalence of MetS among highly exposed young adults (ages 20-39) residents of a large area of the Veneto Region (North-Eastern Italy) primarily stemming from PFAS water contamination before September 2013. A total of 15,876 eligible young adult residents living in the investigated municipalities were enrolled in the study from January 2017 to July 2019. METHODS: MetS was defined by using a modified harmonized definition requiring the presence of 3 of the following: obesity (body mass index ≥30), elevated triglyceride (TG), reduced high-density lipoprotein cholesterol, elevated blood pressure, and hemoglobin A1c ≥ 6.1% or self-reported diabetes mellitus or drug treatment for hyperglycemia. Multivariable generalized additive models were performed to identify the associations between four serum PFAS, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA), and risk of MetS controlling for potential confounders. RESULTS: A total of 1282 participants (8.1%) met the criteria of MetS with a higher prevalence among men. PFOA, PFHxS, and PFNA were not associated with the risk of MetS, whereas PFOS showed a consistent protective effect against the risk of MetS (OR 0.76, (95% CI: 0.69, 0.85) per ln-PFOS). However, we found statistically significant positive associations between PFAS serum levels and individual components of MetS, mainly elevated blood pressure and elevated TG. CONCLUSION: Our results did not support a consistent association between PFAS and MetS and conflicting findings were observed for individual components of MetS.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Síndrome Metabólica , Adulto , Caprilatos , Estudos Transversais , Humanos , Itália/epidemiologia , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/epidemiologia , Prevalência , Adulto Jovem
17.
Environ Int ; 146: 106257, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395925

RESUMO

Effect biomarkers can be used to elucidate relationships between exposure to environmental chemicals and their mixtures with associated health outcomes, but they are often underused, as underlying biological mechanisms are not understood. We aim to provide an overview of available effect biomarkers for monitoring chemical exposures in the general and occupational populations, and highlight their potential in monitoring humans exposed to chemical mixtures. We also discuss the role of the adverse outcome pathway (AOP) framework and physiologically based kinetic and dynamic (PBK/D) modelling to strengthen the understanding of the biological mechanism of effect biomarkers, and in particular for use in regulatory risk assessments. An interdisciplinary network of experts from the European chapter of the International Society for Exposure Science (ISES Europe) and the Organization for Economic Co-operation and Development (OECD) Occupational Biomonitoring activity of Working Parties of Hazard and Exposure Assessment group worked together to map the conventional framework of biomarkers and provided recommendations for their systematic use. We summarized the key aspects of this work here, and discussed these in three parts. Part I, we inventory available effect biomarkers and promising new biomarkers for the general population based on the H2020 Human Biomonitoring for Europe (HBM4EU) initiative. Part II, we provide an overview AOP and PBK/D modelling use that improved the selection and interpretation of effect biomarkers. Part III, we describe the collected expertise from the OECD Occupational Biomonitoring subtask effect biomarkers in prioritizing relevant mode of actions (MoAs) and suitable effect biomarkers. Furthermore, we propose a tiered risk assessment approach for occupational biomonitoring. Several effect biomarkers, especially for use in occupational settings, are validated. They offer a direct assessment of the overall health risks associated with exposure to chemicals, chemical mixtures and their transformation products. Promising novel effect biomarkers are emerging for biomonitoring of the general population. Efforts are being dedicated to prioritizing molecular and biochemical effect biomarkers that can provide a causal link in exposure-health outcome associations. This mechanistic approach has great potential in improving human health risk assessment. New techniques such as in silico methods (e.g. QSAR, PBK/D modelling) as well as 'omics data will aid this process. Our multidisciplinary review represents a starting point for enhancing the identification of effect biomarkers and their mechanistic pathways following the AOP framework. This may help in prioritizing the effect biomarker implementation as well as defining threshold limits for chemical mixtures in a more structured way. Several ex vivo biomarkers have been proposed to evaluate combined effects including genotoxicity and xeno-estrogenicity. There is a regulatory need to derive effect-based trigger values using the increasing mechanistic knowledge coming from the AOP framework to address adverse health effects due to exposure to chemical mixtures. Such a mechanistic strategy would reduce the fragmentation observed in different regulations. It could also stimulate a harmonized use of effect biomarkers in a more comparable way, in particular for risk assessments to chemical mixtures.


Assuntos
Monitoramento Biológico , Exposição Ambiental , Biomarcadores , Exposição Ambiental/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Medição de Risco
18.
Ecotoxicol Environ Saf ; 209: 111805, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360787

RESUMO

BACKGROUND: Residents of a large area of North-Eastern Italy were exposed for decades to high concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) via drinking water. Serum PFAS levels have been consistently associated with elevated serum lipids, but few studies have been conducted among pregnant women, and none has stratified analyses by trimester of gestation. Elevated serum lipid levels during pregnancy can have both immediate and long-lasting effects on pregnant women and the developing fetus. We evaluated the association between perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoro-hexanesulfonate (PFHxS) levels in relation to lipid profiles in highly-exposed pregnant women. METHODS: A cross-sectional analysis was conducted in 319 pregnant women (age 14-48 years) enrolled in the Regional health surveillance program. Non-fasting blood samples were obtained in any trimester of pregnancy and analyzed for PFOA, PFOS and PFHxS, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C). Low-density lipoprotein cholesterol (LDL-C) was calculated. The associations between ln-transformed PFAS (and categorized into quartiles) and lipids were assessed using generalized additive models. Analyses were adjusted for potential confounders and stratified according to pregnancy trimester. RESULTS: The geometric means of PFOA, PFOS and PFHxS were 14.78 ng/mL, 2.67 ng/mL and 1.89 ng/mL, respectively. The plasma levels of TC, HDL-C and LDL-C increased steadily throughout the trimesters. In the 1st trimester, PFOS was positively associated with TC and PFHxS with HDL-C. In the 3rd trimester, instead, an inverse relationship was seen between PFOA and PFHxS and both TC and LDL-C. CONCLUSIONS: Results suggest the associations between PFAS concentrations and lipid profiles in pregnant women might differ by trimesters of pregnancy. In the first trimester, patterns are similar to those of non-pregnant women, while they differ late in pregnancy. Different independent behavior of PFAS and lipid levels throughout the pregnancy might explain our observations. These findings support the ubiquitous exposure to PFAS and possible influence on lipid metabolisms during pregnancy and suggest a careful evaluation of the timing of PFAS measurement, when examining effects of PFAS during pregnancy on gestational outcomes related to serum lipids amounts.


Assuntos
Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Exposição Materna/estatística & dados numéricos , Gestantes , Adolescente , Adulto , Ácidos Alcanossulfônicos , Caprilatos , Estudos Transversais , Água Potável , Feminino , Humanos , Itália , Lipídeos/sangue , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
19.
Environ Int ; 145: 106117, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971418

RESUMO

BACKGROUND: Residents of a large area of the Veneto Region (North-Eastern Italy) were exposed for decades to drinking water contaminated by perfluoroalkyl substances (PFAS). PFAS have been consistently associated with raised serum lipids, mainly in cross-sectional studies and in background exposure contexts, but the shape of the dose-response relationships has been poorly investigated. The objectives of our study were to evaluate the association between serum PFAS and serum lipids and their dose-response patterns in a large exposed population. METHODS: A cross-sectional study was conducted in 16,224 individuals aged 20-39 years recruited in the regional health surveillance program. 15,720 subjects were analysed after excluding pregnant women (n = 327), participants reporting use of cholesterol lowering medications (n = 67) or with missing information on the selected covariates (n = 110). Twelve PFAS were measured by HPLC-MS in serum; three (PFOA, PFOS and PFHxS) were quantifiable in at least 50% of samples. Non-fasting serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglycerides were measured by enzymatic assays in automated analysers and low-density lipoprotein cholesterol (LDL-C), non-HDL cholesterol and total/HDL cholesterol ratio were calculated. The associations between natural log (ln) transformed PFAS and lipids were assessed through generalized additive models using linear regression and smoothing thin plate splines, adjusted for potential confounders. RESULTS: There were strong positive associations between the ln-transformed PFOA, PFOS, and PFHxS and TC, HDL-C, and LDL-C, and between ln PFOA and PFHxS and triglycerides. Each ln-increase in PFOA was associated with an increase of 1.94 mg/dL (95% CI 1.48-2.41) in TC, with 4.99 mg/dL (CI 4.12-5.86) for PFOS and 2.02 mg/dL (CI 1.45-2.58) for PFHxS. CONCLUSIONS: Investigation of the shape of exposure-response associations using splines showed a positive association with the largest increases per unit of PFAS in cholesterol levels occurring at the lower range of PFAS concentrations for each compound.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Adulto , Caprilatos , Estudos Transversais , Feminino , Fluorocarbonos/toxicidade , Humanos , Itália , Lipídeos , Gravidez , Adulto Jovem
20.
Environ Health ; 19(1): 102, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958007

RESUMO

BACKGROUND: Residents in a large area of North-Eastern Italy were exposed to perfluoroalkyl substances (PFAS) via drinking water. Studies on the association between PFAS and blood pressure levels are limited, and results are inconsistent. Using cross-sectional data from the Regional health surveillance program, we aimed to quantify the associations between PFAS serum concentrations and blood pressure and hypertension prevalence. METHODS: The study comprised 16,224 individuals aged 20-39 years. Pregnant women (n = 327), or individuals with missing information on the selected covariates (n = 111) were excluded, leaving 15,786 subjects for the analyses. Hypertension was defined as any self-reported diagnosis, use of antihypertensive drugs, or elevated systolic blood pressure (SBP ≥ 140 mmHg)/diastolic blood pressure (DBP ≥ 90 mmHg). Generalized additive models were used to investigate the relation between perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) natural log (ln) transformed and by decile, and SBP, DBP, hypertension, adjusted for potential confounders. RESULTS: Both SBP and DBP increased significantly with an increase in the ln-transformed serum PFAS concentrations in a monotonic way. The predicted increase in SBP and DBP were 1.54 mmHg (95%CI 0.61-2.47), 1.60 mmHg (95%CI 0.92-2.27) from lowest to highest decile of PFOA. The associations were stronger for SBP in men and for DBP in women. One unit increase in each In-transformed PFAS was positively associated with an increased odd of hypertension in men: PFOA OR = 1.06 (1.01-1.11), PFOS OR = 1.13 (1.03-1.23), PFHxS OR = 1.08 (1.02-1.15), PFNA OR = 1.20 (1.02-1.40). CONCLUSIONS: Our findings suggest that serum PFAS concentrations were associated with increased systolic and diastolic blood pressure in a large highly exposed young adult population. Although the magnitude of the observed effect was relatively small, if confirmed it would be of public health relevance since even small increases in blood pressure levels at the population level may be associated to a raised risk of adverse outcomes such as cardiovascular disease and target organ damage.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Hipertensão/epidemiologia , Adulto , Estudos Transversais , Água Potável/química , Feminino , Humanos , Hipertensão/induzido quimicamente , Itália/epidemiologia , Masculino , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA