Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9390, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672438

RESUMO

Taxol (Paclitaxel) and its derivative taxanes are widely used in chemotherapy and treatment of different types of cancer. Although the extracted taxanes from Taxus sp. are currently used in semi-synthetic production of Taxol, providing alternative always available sources is still a main concern. Due to availability and fast growth rate, microorganisms are much potent alternative sources for taxanes. In the present study, 249 endophytic fungi were isolated from Corylus avellana at six different locations of Iran, among which 18 species were capable to produce taxanes. Genotyping analysis indicated that 17 genera were ascomycetes but only one basidiomycete. Seven taxanes were detected and quantified in solid and suspension cultures by HPLC and their structures were confirmed by LC-Mass analysis. Among endophytes, CA7 had all 7 taxoids and CA1 had the highest Taxol yield. In 78% of endophytes transferring to liquid media was accompanied by increase of taxanes yield and increased taxan production and its release to media up to 90%. Evaluation of cytotoxicity indicated that extracts of all isolated fungi were lethal to MCF7 cells. Since endophytes produced remarkable amounts of taxanes, they can be suggested as alternative inexpensive and easily available resources for Taxol production in semi-synthesis plans.


Assuntos
Ascomicetos , Corylus , Taxus , Ascomicetos/genética , Endófitos , Fungos , Humanos , Paclitaxel , Taxoides , Taxus/microbiologia
2.
Sci Rep ; 12(1): 284, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997162

RESUMO

Soils and oak trees (Quercus brantii Lindl.) in Zagros forests are suffering from the air pollution caused by the Ilam Gas Refinery. Thus, for the first time, we investigated the contamination level of sulfur and trace elements in these ecosystems. Sampling of soil and tree leaves was carried out in different seasons of 2019 and at different distances from the gas refinery. The results showed that soils and leaves at the various distances compared with control distance (10,000 m) were more affected by the gas refinery. Distance from the pollution source and physicochemical properties of soils were the main factors affecting contamination of soil elements contents. The soils with pollution load indices (PLI) of 4.54 were in the highly polluted category. Sulfur was at highly polluted category in soils and were highly enriched in trees. The trees mainly absorbed studied elements via their aerial organs. Our findings indicated that oak trees with the highest value of metal accumulation index are influence tools for monitoring various elements in the polluted air produced by the gas refinery. It is recommended that the ecosystem components near the refinery be studied to accurately evaluate disorders in the food chain.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Florestas , Metais/análise , Indústria de Petróleo e Gás , Quercus/química , Solo/química , Enxofre/análise , Árvores/química , Poluentes Atmosféricos/toxicidade , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Irã (Geográfico) , Metais/toxicidade , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Quercus/efeitos dos fármacos , Medição de Risco , Estações do Ano , Enxofre/toxicidade , Árvores/efeitos dos fármacos
3.
Environ Sci Pollut Res Int ; 29(7): 10366-10379, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34519983

RESUMO

Air pollution around refineries and factories is one of the major environmental challenges affecting forest ecosystems' health. Although there have been many studies on Iran's forest ecosystems, the physiological and morphological responses of Brant's oak (Quercus brantii Lindl.) leaves to the pollution of the gas refineries in the semiarid forests have not received much attention. We sampled healthy and mature leaves from four oak stands in different seasons (spring, summer, and autumn of 2019) and at various distances from the gas refinery (1,000, 1,500, 2,000, 2,500, and 10,000 m). The results showed that oak trees in different seasons and at different distances from the refinery had different physiological and morphological leaf trait responses to the pollution source. Oak trees with an air pollution tolerance index value of less than 11 were in a sensitive range to air pollution and can be used to biomonitor air pollution around the gas refinery in Zagros forests. Physiological traits in different seasons and at various distances in comparison with morphological traits (persistent reaction responses) were well distinguished from one another and were more affected by pollution. Oak trees in summer and autumn and at distances up to 2,500 m had rapid reaction responses, including oxidative stress indicators such as electrolyte leakage (EL), hydrogen peroxide, and different enzymatic and nonenzymatic antioxidants such as phenol, flavonoids, catalase, and proline. Because of their high sensitivity to atmospheric pollutant stresses, we recommend that these traits be used for rapid and low-cost environmental monitoring of pollution in different seasons and distances from pollution sources in semiarid ecosystems.


Assuntos
Quercus , Ecossistema , Florestas , Irã (Geográfico) , Folhas de Planta , Estações do Ano , Árvores
4.
Plant Cell Rep ; 39(2): 227-243, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31707473

RESUMO

KEY MESSAGE: MeJA triggers a time-dependent behavior of the phenylpropanoid compounds. Plant cells produce a large number of metabolites in response to environmental factors. The cellular responses to environmental changes are orchestrated by signaling molecules, such as methyl jasmonate (MeJA). To understand how the MeJA changes the behavior of amino acids, carbohydrates, and phenylpropanoid compounds such as phenolic acids, phenylethanoid-glycosides, and flavonoids in Scrophularia striata cells; we monitored the metabolic responses for different times of exposure. In this study, we performed a time course analysis of metabolites and enzymes in S. striata cells exposed to MeJA (100 µM) and evaluated the metabolic flux towards carbon-rich secondary metabolites production. Moreover, we calculated the biosynthetic energy cost for free amino acids. Our results indicated that MeJA accelerates the sucrose degradation and directs the metabolic fluxes towards a pool of flavonoids and phenylethanoid glycosides through a change in enzyme behavior in the entry point and center of the phenylpropanoid pathway. MeJA also decreased and then raised the amino acid biosynthesis cost in S. striata cells in a time-dependent manner, indicating the cells evolve to utilize amino acids more economically by reducing cell growth. Finally, we classified the marked changes in the metabolites level and enzyme activities into three groups including early-, late-, and oscillatory-response groups to MeJA and summarized our findings as a model depicting pathway interactions during MeJA elicitation. Determination of metabolic levels in response to MeJA suggests that the changes in metabolic responses are time-dependent.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenilpropionatos/metabolismo , Células Vegetais , Scrophularia/citologia , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos , Scrophularia/metabolismo
5.
Plant Sci ; 280: 416-423, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30824021

RESUMO

Cadmium (Cd) toxicity induces oxidative burst and leads to programmed cell death (PCD) in plant cells. The role of salicylic acid-induced protein kinase (SIPK) signaling pathway in Cd-induced oxidative stress was investigated in suspension-cultured tobacco (Nicotiana tabacum L. cv. Barley 21). The cells were pretreated with 40 µM PD98059 (inhibitor of MAPKK) and then exposed to 50 µM Cd for 24 h. The percentages of cell viability, apoptosis, necrosis, and the content of reactive oxygen species (ROS) were monitored by flow cytometry. Expression of PCD related gene (Hsr203J) and the contents of certain signaling molecules were measured as well. The results showed that Cd increased the expression of SIPK, Hsr203J, and CAT genes, the activities of catalase and caspase-3-like enzymes. Addition of PD98059 inhibitor reduced the expression of Hsr203J and CAT genes, decreased CAT activity, but increased ROS and SA contents, and caspase-3-like activity and apoptosis rate. The highest apoptosis level was accompanied by the highest level of Hsr203J gene expression. From the results it can be suggested that upon treatment of tobacco cells with Cd, internal SA content increased and induced the SIPK signaling pathway, thereby inhibited the antioxidant system and led to PCD.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Apoptose , Catalase/genética , Catalase/metabolismo , Esterases/efeitos dos fármacos , Esterases/genética , Flavonoides/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Estresse Oxidativo , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Inibidores de Proteínas Quinases/farmacologia , Ácido Salicílico/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/genética
6.
Plant Physiol Biochem ; 130: 139-147, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29982170

RESUMO

Plants respond to water stress through a variety of mechanisms, depending on metabolites preferences and their available resources. This work was performed to elucidate the cross-talk between signaling molecules (polyamines (PAs), hydrogen peroxide (H2O2) and nitric oxide (NO)), phenolic compounds and osmolytes (phenylethanoid glycosides (PhGs), phenolic acids, flavonoids, soluble sugars and amino acids) under water stress in Scrophularia striata plants. The results revealed that PAs, NO levels were enhanced in the plants, earlier in response to polyethylene glycol-induced water stress. The antioxidative mechanisms with increased activity of catalase (CAT), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) and also phenylalanine ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), as key enzymes in phenolic pathway were deployed in response to the stress. Mannose, glucose, xylose/rhamnose which are involved in PhGs biosynthesis as well as in serving osmotic adjustment were modulated. The elevated content of arginine and methionine as PAs precursors and tyrosine and phenylalanine as PhGs precursors was enhanced by water stress and was significantly associated with PAs and PhGs accumulations. Metabolic profiling revealed new information about relationship between stress signal molecules; PAs, NO and H2O2, osmolytes (sugers, PhGs) and phenolic compounds which involved in the improvement of water stress tolerance in S. striata.


Assuntos
Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Fenóis/metabolismo , Poliaminas/metabolismo , Scrophularia/metabolismo , Água/metabolismo , Scrophularia/efeitos dos fármacos , Transdução de Sinais , Estresse Fisiológico
7.
Int J Phytoremediation ; 20(13): 1292-1299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-26121329

RESUMO

Sites with crude oil pollution have been successfully treated using phytoremediation, but expanding the range of plants that can be used and understanding how exposure impacts the plants are two areas of study that are important to continue. Leucanthemum vulgare has been shown to grow well under a variety of stressful conditions. To examine L. vulgare's ability to both survive crude oil exposure and to reduce crude oil concentrations in soil, plants were placed in soil containing 0, 2.5, 5, 7.5, or 10% w/w crude oil. Total petroleum hydrocarbons (TPH) concentration, peroxidase and catalase activity, proline and phenol content in roots and leaves were determined at the start of planting and every 2 months for 6 months. L. vulgare roots were successfully colonized with mycorrhizae under all conditions. Results showed positive correlation between antioxidant compound concentration and crude oil contamination. Also, a significant reduction occurred in TPH content of soil over time in planted pots as compared to controls. The lowest TPH content was recorded after 6 months under all treatments. Results showed L. vulgare could survive crude oil exposure and enhance reducing of crude oil from soil.


Assuntos
Poluição por Petróleo/análise , Petróleo , Poluentes do Solo/análise , Biodegradação Ambiental , Hidrocarbonetos , Leucanthemum , Solo/química
8.
Planta ; 244(1): 75-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26945858

RESUMO

MAIN CONCLUSION: A metabolic profiling including calculation of energy cost of amino acids biosynthesis in cultured cells of Scrophularia striata showed that methyl jasmonate-inducible oxidative stress elicited secondary metabolites formation derived from phenylalanine and tyrosine and increased energy cost for these amino acids biosynthesis. Understanding of the metabolic pathways in cell culture of Scrophularia striata, an aromatic plant species, facilitates means of production of pharmaceutical metabolites under oxidative stress. In this study, we evaluated the effects of MeJA on the S. striata metabolic pathway and the responses to oxidative stress. Exposure to methyl jasmonate (MeJA) affects plant growth, effectively induces production of reactive oxygen species (ROS) and inserts oxidative stress at the cellular level which results in alteration of primary metabolites and production of phenylepropanoid compounds. Cells treated with MeJA indicated increase in the activities of three antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPx) as well as intracellular H2O2 and MDA contents compared with mock-treated cells. High performance liquid chromatography (HPLC)-based metabolome analysis revealed dynamic metabolic changes in oxidatively stressed S. striata cells, e.g., general phenylpropanoid pathway, phenylethanoid-glycosides, lignans, and increased energy cost of biosynthesis and accumulation of amino acids. Furthermore, principal component analysis (PCA)-derived score plots demonstrated that MeJA affects cellular metabolism in S. striata cells and significantly alters metabolite composition under MeJA-inducible oxidative stress. These observations suggest that MeJA-elicited cell suspension cultures of S. striata balanced the production of primary and secondary metabolites in coordination with ROS-scavenging system.


Assuntos
Acetatos/farmacologia , Aminoácidos/biossíntese , Ciclopentanos/farmacologia , Hidroxibenzoatos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxilipinas/farmacologia , Propanóis/metabolismo , Scrophularia/efeitos dos fármacos , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica , Peroxidase/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Scrophularia/citologia , Scrophularia/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA