Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Cell Dev Biol ; 11: 1166232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397249

RESUMO

Sperm are terminally differentiated cells that lack most of the membranous organelles, resulting in a high abundance of ether glycerolipids found across different species. Ether lipids include plasmalogens, platelet activating factor, GPI-anchors and seminolipid. These lipids play important roles in sperm function and performance, and thus are of special interest as potential fertility markers and therapeutic targets. In the present article, we first review the existing knowledge on the relevance of the different types of ether lipids for sperm production, maturation and function. To further understand ether-lipid metabolism in sperm, we then query available proteomic data from highly purified sperm, and produce a map of metabolic steps retained in these cells. Our analysis pinpoints the presence of a truncated ether lipid biosynthetic pathway that would be competent for the production of precursors through the initial peroxisomal core steps, but devoid of subsequent microsomal enzymes responsible for the final synthesis of all complex ether-lipids. Despite the widely accepted notion that sperm lack peroxisomes, the thorough analysis of published data conducted herein identifies nearly 70% of all known peroxisomal resident proteins as part of the sperm proteome. In view of this, we highlight open questions related to lipid metabolism and possible peroxisomal functions in sperm. We propose a repurposed role for the truncated peroxisomal ether-lipid pathway in detoxification of products from oxidative stress, which is known to critically influence sperm function. The likely presence of a peroxisomal-derived remnant compartment that could act as a sink for toxic fatty alcohols and fatty aldehydes generated by mitochondrial activity is discussed. With this perspective, our review provides a comprehensive metabolic map associated with ether-lipids and peroxisomal-related functions in sperm and offers new insights into potentially relevant antioxidant mechanisms that warrant further research.

2.
Invest Ophthalmol Vis Sci ; 64(5): 17, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204785

RESUMO

Purpose: Plasmalogens (Plgs) are highly abundant lipids in the retina, and their deficiency leads to severe abnormalities during eye development. The first acylation step in the synthesis of Plgs is catalyzed by the enzyme glyceronephosphate O-acyltransferase (GNPAT), which is also known as dihydroxyacetone phosphate-acyltransferase (EC 2.3.1.42). GNPAT deficiency produces rhizomelic chondrodysplasia punctata type 2, a genetic disorder associated with developmental ocular defects. Despite the relevance of retinal Plgs, our knowledge of the mechanisms that regulate their synthesis, and the role of GNPAT during eye development is limited. Methods: Using the Xenopus laevis model organism, we characterized by in situ hybridization the expression pattern of gnpat and compared it to glycerol 3-phosphate acyltransferase mitochondrial (gpam or gpat1) during eye neurogenesis, lamination, and morphogenesis. The Xenopus Gnpat was biochemically characterized in a heterologous expression system in yeast. Results: During development, gnpat is expressed in proliferative cells of the retina and lens, and post-embryogenesis in proliferative cells of the ciliary marginal zone and lens epithelium. In contrast, gpam expression is mainly restricted to photoreceptors. Xenopus Gnpat expressed in yeast is present in both soluble and membrane fractions, but only the membrane-bound enzyme displays activity. The amino terminal of Gnpat, conserved in humans, shows lipid binding capacity that is enhanced by phosphatidic acid. Conclusions: Enzymes involved in the Plgs and glycerophospholipid biosynthetic pathways are differentially expressed during eye morphogenesis. The gnpat expression pattern and the molecular determinants regulating Gnpat activity advance our knowledge of this enzyme, contributing to our understanding of the retinal pathophysiology associated with GNPAT deficiency.


Assuntos
Aciltransferases , Plasmalogênios , Proteínas de Xenopus , Animais , Humanos , Aciltransferases/genética , Aciltransferases/metabolismo , Plasmalogênios/metabolismo , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
3.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37042812

RESUMO

The nuclear envelope (NE) is important in maintaining genome organization. The role of lipids in communication between the NE and telomere regulation was investigated, including how changes in lipid composition impact gene expression and overall nuclear architecture. Yeast was treated with the non-metabolizable lysophosphatidylcholine analog edelfosine, known to accumulate at the perinuclear ER. Edelfosine induced NE deformation and disrupted telomere clustering but not anchoring. Additionally, the association of Sir4 at telomeres decreased. RNA-seq analysis showed altered expression of Sir-dependent genes located at sub-telomeric (0-10 kb) regions, consistent with Sir4 dispersion. Transcriptomic analysis revealed that two lipid metabolic circuits were activated in response to edelfosine, one mediated by the membrane sensing transcription factors, Spt23/Mga2, and the other by a transcriptional repressor, Opi1. Activation of these transcriptional programs resulted in higher levels of unsaturated fatty acids and the formation of nuclear lipid droplets. Interestingly, cells lacking Sir proteins displayed resistance to unsaturated-fatty acids and edelfosine, and this phenotype was connected to Rap1.


Assuntos
Membrana Nuclear , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae , Telômero , Proteínas de Membrana/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Éteres Fosfolipídicos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Elife ; 112022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354737

RESUMO

Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gotículas Lipídicas/metabolismo , Ergosterol , Lipídeos , Proteínas Relacionadas à Autofagia/metabolismo
5.
Front Cell Dev Biol ; 8: 700, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850820

RESUMO

Growth resumption from stationary phase in Saccharomyces cerevisiae, is characterized by lipid droplet (LD) consumption and channeling of lipid precursors toward synthesis of membranes. We have previously determined that triacylglycerol lipolysis contributes to a pool of diacylglycerol (DAG) associated with the yeast vacuole that is enriched in structures that are in close proximity to LDs. In this study we have monitored these structures using a DAG sensor fused to GFP during isolation of LDs. A unique fraction containing the DAG sensor, with low presence of LDs, was identified. Membranes enriched in the DAG probe were obtained by immunoaffinity purification using a GFP nanobody, and the associated proteome was investigated by mass spectrometry. It was determined this LD-associated fraction was enriched in proteins known to shape the tubular endoplasmic reticulum (ER) like Yop1, Sey1, Rtn1, and Rtn2. Consistently, cells lacking three of these proteins (rtn1Δ rtn2Δ yop1Δ) exhibited delayed LD consumption, larger LDs and abnormal LD distribution. In addition, the triple mutant displayed aberrant localization of the DAG sensor after 5 h of growth resumption from stationary phase. Manipulation of DAG levels by overexpression of the DAG kinase Dgk1, impacted localization of the DAG probe and affected fitness of the triple mutant. Altogether these results link LD consumption to tubular ER expansion as a gateway of lipid precursors that otherwise accumulate in vacuolar associated membranes or other internal compartments. Furthermore, conversion of DAG to phosphatidic acid (PA) in the absence of a functional tubular ER was toxic to cells, suggesting the ratio of PA to DAG is critical to allow growth progression.

6.
Front Genet ; 11: 136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184804

RESUMO

Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.

7.
Handb Exp Pharmacol ; 259: 261-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31302758

RESUMO

Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug-lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.


Assuntos
Antineoplásicos/química , Lipídeos/química , Microdomínios da Membrana/química , Apoptose , Humanos , Neoplasias
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158509, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31421179

RESUMO

The proteome of lipid droplets, storage compartments of triacylglycerols (TAGs), comprises TAG synthesizing and TAG degrading enzymes. Thus, to prevent a futile cycle the activity of enzymes catalyzing key steps in TAG turnover has to be strictly coordinated. The first and committed reaction of TAG synthesis is catalyzed by a glycerol­3­phosphate acyltransferase (GPAT). Here we demonstrate that in the model organism yeast the lipid droplet associated GPAT Gpt2 requires phosphorylation at a conserved motif to prevent a futile TAG cycle. Phosphorylation deficiency at the conserved motif increases the enzyme activity of Gpt2 and consequently enhances TAG synthesis. In proliferating cells the phosphorylation deficient GPAT-form contributes to TAG metabolism similar to control. However, during lipolysis the increased activity of phosphorylation deficient Gpt2 causes a constant TAG level by using TAG-released fatty acids as substrate for TAG synthesis. These data strongly indicate that phosphorylation of Gpt2 at a conserved motif plays a critical role in coordinating the synthesis and degradation of TAGs.


Assuntos
Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/metabolismo , Ativação Enzimática , Gotículas Lipídicas/metabolismo , Lipólise , Fosforilação
9.
Traffic ; 20(3): 226-245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569465

RESUMO

Diacylglycerol (DAG) is a key signaling lipid and intermediate in lipid metabolism. Our knowledge of DAG distribution and dynamics in cell membranes is limited. Using live-cell fluorescence microscopy we investigated the localization of yeast cytosolic-facing pools of DAG in response to conditions where lipid homeostasis and DAG levels were known to be altered. Two main pools were monitored over time using DAG sensors. One pool was associated with vacuolar membranes and the other localized to sites of polarized growth. Dynamic changes in DAG distribution were observed during resumption of growth from stationary phase, when DAG is used to support phospholipid synthesis for membrane proliferation. Vacuolar membranes experienced constant morphological changes displaying DAG enriched microdomains coexisting with liquid-disordered areas demarcated by Vph1. Formation of these domains was dependent on triacylglycerol (TAG) lipolysis. DAG domains and puncta were closely connected to lipid droplets. Lack of conversion of DAG to phosphatidate in growth conditions dependent on TAG mobilization, led to the accumulation of DAG in a vacuolar-associated compartment, impacting the polarized distribution of DAG at budding sites. DAG polarization was also regulated by phosphatidylserine synthesis/traffic and sphingolipid synthesis in the Golgi.


Assuntos
Diglicerídeos/metabolismo , Microdomínios da Membrana/metabolismo , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
10.
J Cell Biol ; 217(1): 329-346, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29089378

RESUMO

Phagocytosis of filamentous bacteria occurs through tubular phagocytic cups (tPCs) and takes many minutes to engulf these filaments into phagosomes. Contravening the canonical phagocytic pathway, tPCs mature by fusing with endosomes. Using this model, we observed the sequential recruitment of early and late endolysosomal markers to the elongating tPCs. Surprisingly, the regulatory early endosomal lipid phosphatidylinositol-3-phosphate (PtdIns(3)P) persists on tPCs as long as their luminal pH remains neutral. Interestingly, by manipulating cellular pH, we determined that PtdIns(3)P behaves similarly in canonical phagosomes as well as endosomes. We found that this is the product of a pH-based mechanism that induces the dissociation of the Vps34 class III phosphatidylinositol-3-kinase from these organelles as they acidify. The detachment of Vps34 stops the production of PtdIns(3)P, allowing for the turnover of this lipid by PIKfyve. Given that PtdIns(3)P-dependent signaling is important for multiple cellular pathways, this mechanism for pH-dependent regulation of Vps34 could be at the center of many PtdIns(3)P-dependent cellular processes.


Assuntos
Membrana Celular/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Legionella pneumophila/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Endossomos/metabolismo , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Camundongos , Células RAW 264.7 , Transdução de Sinais , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
11.
J Proteome Res ; 16(10): 3741-3752, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28849941

RESUMO

The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos/genética , Metabolômica , Éteres Fosfolipídicos/metabolismo , Ciclo do Ácido Cítrico/genética , Gorduras na Dieta/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/química , Ácidos Graxos não Esterificados/genética , Lisofosfatidilcolinas/química , Lisofosfatidilcolinas/metabolismo , Estresse Oxidativo/genética , Éteres Fosfolipídicos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188886

RESUMO

The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Fusão Gênica Artificial , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Sci Rep ; 6: 19332, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757638

RESUMO

Fundamental changes in the composition and distribution of lipids within the brain are believed to contribute to the cognitive decline associated with Alzheimer's disease (AD). The mechanisms by which these changes in lipid composition affect cellular function and ultimately cognition are not well understood. Although "candidate gene" approaches can provide insight into the effects of dysregulated lipid metabolism they require a preexisting understanding of the molecular targets of individual lipid species. In this report we combine unbiased gene expression profiling with a genome-wide chemogenomic screen to identify the mitochondria as an important downstream target of PC(O-16:0/2:0), a neurotoxic lipid species elevated in AD. Further examination revealed that PC(O-16:0/2:0) similarly promotes a global increase in ceramide accumulation in human neurons which was associated with mitochondrial-derived reactive oxygen species (ROS) and toxicity. These findings suggest that PC(O-16:0/2:0)-dependent mitochondrial dysfunction may be an underlying contributing factor to the ROS production associated with AD.


Assuntos
Doença de Alzheimer/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Transdução de Sinais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Células Cultivadas , Ceramidas/metabolismo , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Complexos Multiproteicos/metabolismo , Neurônios/metabolismo , Fases de Leitura Aberta , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
14.
Chem Phys Lipids ; 191: 153-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26386399

RESUMO

The lysophosphatidylcholine analogue edelfosine is a potent antitumor and antiparasitic drug that targets cell membranes. Previous studies have shown that edelfosine alters membrane domain organization inducing internalization of sterols and endocytosis of plasma membrane transporters. These early events affect signaling pathways that result in cell death. It has been shown that edelfosine preferentially partitions into more rigid lipid domains in mammalian as well as in yeast cells. In this work we aimed at investigating the effect of edelfosine on membrane domain organization using monolayers prepared from whole cell lipid extracts of cells treated with edelfosine compared to control conditions. In Langmuir monolayers we were able to detect important differences to the lipid packing of the membrane monofilm. Domain formation visualized by means of Brewster angle microscopy also showed major morphological changes between edelfosine treated versus control samples. Importantly, edelfosine resistant cells defective in drug uptake did not display the same differences. In addition, co-spread samples of control lipid extracts with edelfosine added post extraction did not fully mimic the results obtained with lipid extracts from treated cells. Altogether these results indicate that edelfosine induces changes in membrane domain organization and that these changes depend on drug uptake. Our work also validates the use of monolayers derived from complex cell lipid extracts combined with Brewster angle microscopy, as a sensitive approach to distinguish between conditions associated with susceptibility or resistance to lysophosphatidylcholine analogues.


Assuntos
Membrana Celular/química , Éteres Fosfolipídicos/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Força Compressiva , Endocitose , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Éteres Fosfolipídicos/farmacologia , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Photochem Photobiol ; 91(2): 272-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25515933

RESUMO

The nitrobenzofurazan (NBD) moiety has gained tremendous popularity over the last decades due to its fluorogenic nature. Indeed, upon interaction with aliphatic amines, it generates a stable fluorescent adduct, which has been used for protein and lipid labeling. In fact the 4-amino substituted NBD belongs to the broad family of intramolecular charge transfer molecules, with the amino group acting as an electron donor upon photoexcitation, and the nitro group as an electron acceptor. Although the singlet excited state of 4-amino NBD derivatives has been abundantly studied, investigation of its triplet manifold is scarce and even the absence of intersystem crossing for this type of molecules has been suggested. However, intramolecular charge transfer molecules are known to undergo intersystem crossing and high phosphorescence quantum yields have been reported in a nonpolar solvent. In the present paper, we have investigated the photophysical and photochemical properties of N-hexyl-7-nitrobenzo[c][1,2,5]xadiazole-4-amine. We have shown the existence of a triplet state for this molecule in cyclohexane via nanosecond laser flash photolysis. Interestingly, deactivation of the triplet state leads to photoproducts formation, which are only present in the absence of oxygen.


Assuntos
Benzoxazóis/química , Cicloexanos/química , Oxigênio Singlete/química , Cinética , Lasers de Excimer , Luz , Estrutura Molecular , Fotólise , Solventes , Espectrometria de Fluorescência , Eletricidade Estática , Termodinâmica
16.
Lipid Insights ; 8(Suppl 1): 75-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27081314

RESUMO

Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.

17.
PLoS One ; 9(10): e110684, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25340523

RESUMO

Glycerolipid synthesis represents a central metabolic process of all forms of life. In the last decade multiple genes coding for enzymes responsible for the first step of the pathway, catalyzed by glycerol 3-phosphate acyltransferase (GPAT), have been described, and characterized primarily in model organisms like Saccharomyces cerevisiae and mice. Notoriously, the fungal enzymes share low sequence identity with their known animal counterparts, and the nature of their homology is unclear. Furthermore, two mitochondrial GPAT isoforms have been described in animal cells, while no such enzymes have been identified in Fungi. In order to determine if the yeast and mammalian GPATs are representative of the set of enzymes present in their respective groups, and to test the hypothesis that metazoan orthologues are indeed absent from the fungal clade, a comparative genomic and phylogenetic analysis was performed including organisms spanning the breadth of the Opisthokonta supergroup. Surprisingly, our study unveiled the presence of 'fungal' orthologs in the basal taxa of the holozoa and 'animal' orthologues in the basal holomycetes. This includes a novel clade of fungal homologues, with putative peroxisomal targeting signals, of the mitochondrial/peroxisomal acyltransferases in Metazoa, thus potentially representing an undescribed metabolic capacity in the Fungi. The overall distribution of GPAT homologues is suggestive of high relative complexity in the ancestors of the opisthokont clade, followed by loss and sculpting of the complement in the descendent lineages. Divergence from a general versatile metabolic model, present in ancestrally deduced GPAT complements, points to distinctive contributions of each GPAT isoform to lipid metabolism and homeostasis in contemporary organisms like humans and their fungal pathogens.


Assuntos
Eucariotos/enzimologia , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Glicolipídeos/biossíntese , Filogenia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biocatálise , Retículo Endoplasmático/enzimologia , Fungos/enzimologia , Duplicação Gênica , Glicerol-3-Fosfato O-Aciltransferase/química , Humanos , Espaço Intracelular/metabolismo , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Modelos Biológicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
18.
PLoS One ; 8(4): e60485, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593226

RESUMO

The oxysterol binding protein family are amphitropic proteins that bind oxysterols, sterols, and possibly phosphoinositides, in a conserved binding pocket. The Saccharomyces cerevisiae oxysterol binding protein family member Kes1 (also known as Osh4) also binds phosphoinositides on a distinct surface of the protein from the conserved binding pocket. In this study, we determine that the oxysterol binding protein family member Kes1 is required to maintain the ratio of complex sphingolipids and levels of ceramide, sphingosine-phosphate and sphingosine. This inability to maintain normal sphingolipid homeostasis resulted in misdistribution of Pma1, a protein that requires normal sphingolipid synthesis to occur to partition into membrane rafts at the Golgi for its trafficking to the plasma membrane.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Membrana Celular/metabolismo , Ceramidas/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/metabolismo
19.
J Biol Chem ; 288(12): 8405-8418, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23335509

RESUMO

The ether-phospholipid edelfosine, a prototype antitumor lipid (ATL), kills yeast cells and selectively kills several cancer cell types. To gain insight into its mechanism of action, we performed chemogenomic screens in the Saccharomyces cerevisiae gene-deletion strain collection, identifying edelfosine-resistant mutants. LEM3, AGP2, and DOC1 genes were required for drug uptake. Edelfosine displaced the essential proton pump Pma1p from rafts, inducing its internalization into the vacuole. Additional ATLs, including miltefosine and perifosine, also displaced Pma1p from rafts to the vacuole, suggesting that this process is a major hallmark of ATL cytotoxicity in yeast. Radioactive and synthetic fluorescent edelfosine analogues accumulated in yeast plasma membrane rafts and subsequently the endoplasmic reticulum. Although both edelfosine and Pma1p were initially located at membrane rafts, internalization of the drug toward endoplasmic reticulum and Pma1p to the vacuole followed different routes. Drug internalization was not dependent on endocytosis and was not critical for yeast cytotoxicity. However, mutants affecting endocytosis, vesicle sorting, or trafficking to the vacuole, including the retromer and ESCRT complexes, prevented Pma1p internalization and were edelfosine-resistant. Our data suggest that edelfosine-induced cytotoxicity involves raft reorganization and retromer- and ESCRT-mediated vesicular transport and degradation of essential raft proteins leading to cell death. Cytotoxicity of ATLs is mainly dependent on the changes they induce in plasma membrane raft-located proteins that lead to their internalization and subsequent degradation. Edelfosine toxicity can be circumvented by inactivating genes that then result in the recycling of internalized cell-surface proteins back to the plasma membrane.


Assuntos
Antineoplásicos/farmacologia , Microdomínios da Membrana/metabolismo , Éteres Fosfolipídicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Antineoplásicos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Endocitose , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Microdomínios da Membrana/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Éteres Fosfolipídicos/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
20.
J Biol Chem ; 288(12): 8419-8432, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23344949

RESUMO

The lysophosphatidylcholine analogue edelfosine is a potent antitumor lipid that targets cellular membranes. The underlying mechanisms leading to cell death remain controversial, although two cellular membranes have emerged as primary targets of edelfosine, the plasma membrane (PM) and the endoplasmic reticulum. In an effort to identify conditions that enhance or prevent the cytotoxic effect of edelfosine, we have conducted genome-wide surveys of edelfosine sensitivity and resistance in Saccharomyces cerevisiae presented in this work and the accompanying paper (Cuesta-Marbán, Á., Botet, J., Czyz, O., Cacharro, L. M., Gajate, C., Hornillos, V., Delgado, J., Zhang, H., Amat-Guerri, F., Acuña, A. U., McMaster, C. R., Revuelta, J. L., Zaremberg, V., and Mollinedo, F. (January 23, 2013) J. Biol. Chem. 288,), respectively. Our results point to maintenance of pH homeostasis as a major player in modulating susceptibility to edelfosine with the PM proton pump Pma1p playing a main role. We demonstrate that edelfosine alters PM organization and induces intracellular acidification. Significantly, we show that edelfosine selectively reduces lateral segregation of PM proteins like Pma1p and nutrient H(+)-symporters inducing their ubiquitination and internalization. The biology associated to the mode of action of edelfosine we have unveiled includes selective modification of lipid raft integrity altering pH homeostasis, which in turn regulates cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Proteínas de Transporte de Nucleotídeos/metabolismo , Éteres Fosfolipídicos/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Concentração de Íons de Hidrogênio , Líquido Intracelular/química , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Membranas Intracelulares/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Transporte Proteico , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA