Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Ecol Lett ; 27(7): e14461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953253

RESUMO

Under the recently adopted Kunming-Montreal Global Biodiversity Framework, 196 Parties committed to reporting the status of genetic diversity for all species. To facilitate reporting, three genetic diversity indicators were developed, two of which focus on processes contributing to genetic diversity conservation: maintaining genetically distinct populations and ensuring populations are large enough to maintain genetic diversity. The major advantage of these indicators is that they can be estimated with or without DNA-based data. However, demonstrating their feasibility requires addressing the methodological challenges of using data gathered from diverse sources, across diverse taxonomic groups, and for countries of varying socio-economic status and biodiversity levels. Here, we assess the genetic indicators for 919 taxa, representing 5271 populations across nine countries, including megadiverse countries and developing economies. Eighty-three percent of the taxa assessed had data available to calculate at least one indicator. Our results show that although the majority of species maintain most populations, 58% of species have populations too small to maintain genetic diversity. Moreover, genetic indicator values suggest that IUCN Red List status and other initiatives fail to assess genetic status, highlighting the critical importance of genetic indicators.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Variação Genética , Animais
2.
Astrobiology ; 23(7): 796-811, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279013

RESUMO

Microbial mats are biologically diverse communities that are analogs to some of the earliest ecosystems on Earth. In this study, we describe a unique transiently hypersaline microbial mat uncovered in a shallow pond within the Cuatro Cienegas Basin (CCB) in northern México. The CCB is an endemism-rich site that harbors living stromatolites that have been studied to understand the conditions of the Precambrian Earth. These microbial mats form elastic domes filled with biogenic gas, and the mats have a relatively large and stable subpopulation of archaea. For this reason, this site has been termed archaean domes (AD). The AD microbial community was analyzed by metagenomics over three seasons. The mat exhibited a highly diverse prokaryotic community dominated by bacteria. Bacterial sequences are represented in 37 phyla, mainly Proteobacteria, Firmicutes, and Actinobacteria, that together comprised >50% of the sequences from the mat. Archaea represented up to 5% of the retrieved sequences, with up to 230 different archaeal species that belong to 5 phyla (Euryarchaeota, Crenarchaeota, Thaumarchaeota, Korarchaeota, and Nanoarchaeota). The archaeal taxa showed low variation despite fluctuations in water and nutrient availability. In addition, predicted functions highlight stress responses to extreme conditions present in the AD, including salinity, pH, and water/drought fluctuation. The observed complexity of the AD mat thriving in high pH and fluctuating water and salt conditions within the CCB provides an extant model of great value for evolutionary studies, as well as a suitable analog to the early Earth and Mars.


Assuntos
Archaea , Microbiota , Archaea/genética , México , Filogenia , Bactérias/genética , Água , RNA Ribossômico 16S/genética , Biodiversidade
3.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987062

RESUMO

In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 µg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.

4.
Curr Microbiol ; 80(1): 26, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36474118

RESUMO

Recent advances in understanding the symbiotic interactions between bacteria and fruit flies have shown that they are relevant for mass rearing and the sterile insect technique (SIT). SIT involves mass production and release of sterile insects that would copulate with their wild conspecifics and thus decrease the population growth rate. The irradiation process used to sterilize mass-reared flies can modify the diversity and structure of the midgut bacterial communities, which could affect sterile male survival, flight capacity, and sexual competitiveness. Our aim was to compare bacterial communities in the midgut of wild and mass-reared Anastrepha obliqua (Macquart) males irradiated at 0, 60, and 80 Gy. After adult's emergence, their midguts were dissected, DNA was extracted, and high-throughput sequencing of the V3-V4 region of the 16S rDNA gene was performed. A total of 11 phyla, 17 classes, 47 families, and 52 genera of bacteria were identified. The most representative phylum was Proteobacteria and the predominant family was Enterobacteriaceae. We found that wild males had a different intestinal bacterial community from mass-reared males. In addition, irradiation at 60 and 80 Gy caused changes in the diversity and structure of the midgut microbiota of these sterile males, suggesting that mass rearing and irradiation cause artificial selection of the bacterial communities in the gut of A. obliqua males.


Assuntos
Bactérias , Masculino , Animais , Bactérias/genética
5.
PeerJ ; 10: e13610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789660

RESUMO

Background: As forested natural habitats disappear in the world, traditional, shade-coffee plantations offer an opportunity to conserve biodiversity and ecosystem services. Traditional coffee plantations maintain a diversity of tree species that provide shade for coffee bushes and, at the same time, are important repositories for plants and animals that inhabited the original cloud forest. However, there is still little information about shade-coffee plantation's fungal diversity despite their relevance for ecosystem functioning as decomposers, symbionts and pathogens. Specifically, it is unknown if and what mycorrhizae-forming fungi can be found on the branches and trunks of coffee bushes and trees, which hold a diversity of epiphytes. Here, we evaluate fungal communities on specific plant microsites on both coffee bushes and shade trees. We investigate the ecological roles played by this diversity, with a special focus on mycorrhizae-forming fungi that may enable the establishment and development of epiphytic plants. Methods: We collected 48 bark samples from coffee bushes and shade trees (coffee; tree), from four plant microsites (upper and lower trunks, branches and twigs), in two shade-coffee plantations in the Soconusco region in southern Mexico, at different altitudes. We obtained ITS amplicon sequences that served to estimate alpha and beta diversity, to assign taxonomy and to infer the potential ecological role played by the detected taxa. Results: The bark of shade trees and coffee bushes supported high fungal diversity (3,783 amplicon sequence variants). There were no strong associations between community species richness and collection site, plant type or microsite. However, we detected differences in beta diversity between collection sites. All trophic modes defined by FUNGuild database were represented in both plant types. However, when looking into guilds that involve mycorrhizae formation, the CLAM test suggests that coffee bushes are more likely to host taxa that may function as mycorrhizae. Discussion: We detected high fungal diversity in shade-coffee plantations in Soconusco, Chiapas, possibly remnants of the original cloud forest ecosystem. Several mycorrhiza forming fungi guilds occur on the bark of coffee bushes and shade trees in this agroecosystem, with the potential of supporting epiphyte establishment and development. Thus, traditional coffee cultivation could be part of an integrated strategy for restoration and conservation of epiphytic populations. This is particularly relevant for conservation of threatened species of Orchidaceae that are highly dependent on mycorrhizae formation.


Assuntos
Ecossistema , Micorrizas , Animais , México , Biodiversidade , Florestas , Árvores , Plantas , Micorrizas/genética
6.
Food Environ Virol ; 14(2): 199-211, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508751

RESUMO

The COVID-19 pandemic has been monitored by applying different strategies, including SARS-CoV-2 detection with clinical testing or through wastewater-based epidemiology (WBE). We used the latter approach to follow SARS-CoV-2 dispersion in Tapachula city, located in Mexico's tropical southern border region. Tapachula is a dynamic entry point for people seeking asylum in Mexico or traveling to the USA. Clinical testing facilities for SARS-CoV-2 monitoring are limited in the city. A total of eighty water samples were collected from urban and suburban rivers and sewage and a wastewater treatment plant over 4 months in Tapachula. We concentrated viral particles with a PEG-8000-based method, performed RNA extraction, and detected SARS-CoV-2 particles through RT-PCR. We considered the pepper mild mottle virus as a fecal water pollution biomarker and analytical control. SARS-CoV-2 viral loads (N1 and N2 markers) were quantified and correlated with official regional statistics of COVID-19 bed occupancy and confirmed cases (r > 91%). Our results concluded that WBE proved a valuable tool for tracing and tracking the COVID-19 pandemic in tropical countries with similar water temperatures (21-29 °C). Monitoring SARS-CoV-2 through urban and suburban river water sampling would be helpful in places lacking a wastewater treatment plant or water bodies with sewage discharges.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , México/epidemiologia , Pandemias , RNA Viral/genética , Rios , SARS-CoV-2/genética , Esgotos , Águas Residuárias , Água
7.
PLoS One ; 17(4): e0266335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446869

RESUMO

Polyphagotarsonemus latus Banks is considered a polyphagous pest of diverse agricultural and ornamental crops of global economic significance. Its distribution, host range, variety of symptoms, morphological differences, chaetotaxy and several ontogeny reports have advanced the idea of P. latus as a species complex. Correct pest identification leads to suitable control treatment. Therefore, the objective of this study was the identification of mites collected in two different geographic regions in Mexico (Chiapas and Guanajuato) that had been tentatively designated as Polyphagotarsonemus sp. Biometric differences on the morphology of adults as well the genetic variability were determined by taxonomical and molecular (mitochondrial COI gene) characterization techniques. The identity of the mites from both populations was confirmed as P. latus based on taxonomic characters. Biometric parameter variations were found between both populations (70.58% and 53.84% for females and males, respectively). The average sequenced fragment size was 447 bp (both populations). A homology search against six P. latus sequences available in the GenBank database revealed that sequence KM580507.1 (from India) shows 83.0-86.41% and 99.26-99.52% similarity with the sequences from Guanajuato and Chiapas, respectively. Molecular data indicated a significant divergence between the populations. The genetic distance demonstrates the population from Chiapas has a higher genetic correspondence (0.010) to the sequence from India (KM580507.1) whereas the population from Guanajuato is more distant (0.191). The genetic distance between the populations of this study and other GenBank sequences is even larger. We consider our results strengthen the hypothesis of P. latus consisting of a species-complex. However, it is essential to extend the study to other regions including its country of origin (Sri Lanka), and to include ultrastructural features.


Assuntos
Ácaros , Agricultura , Animais , Feminino , Especificidade de Hospedeiro , Índia , Masculino , México , Ácaros/genética
8.
PeerJ ; 7: e6744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31065455

RESUMO

Introgression, the transmission of genetic material of one taxon into another through hybridization, can have various evolutionary outcomes. Previous studies have detected signs of introgression between western populations of the Mexican endemic and threatened spiny-tailed iguana, Ctenosaura pectinata. However, the extent of this phenomenon along the geographic distribution of the species is unknown. Here, we use multilocus data together with detailed geographic sampling to (1) define genotypic clusters within C. pectinata; (2) evaluate geographic concordance between maternally and biparentally inherited markers; (3) examine levels of introgression between genotypic clusters, and (4) suggest taxonomic modifications in light of this information. Applying clustering methods to genotypes of 341 individuals from 49 localities of C. pectinata and the closely related C. acanthura, we inferred the existence of five genotypic clusters. Contact zones between genotypic clusters with signatures of interbreeding were detected, showing different levels of geographic discordance with mtDNA lineages. In northern localities, mtDNA and microsatellites exhibit concordant distributions, supporting the resurrection of C. brachylopha. Similar concordance is observed along the distribution of C. acanthura, confirming its unique taxonomic identity. Genetic and geographic concordance is also observed for populations within southwestern Mexico, where the recognition of a new species awaits in depth taxonomic revision. In contrast, in western localities a striking pattern of discordance was detected where up to six mtDNA lineages co-occur with only two genotypic clusters. Given that the type specimen originated from this area, we suggest that individuals from western Mexico keep the name C. pectinata. Our results have profound implications for conservation, management, and forensics of Mexican iguanas.

9.
Mol Phylogenet Evol ; 136: 29-34, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30930236

RESUMO

Natural history collections are increasingly valued as genomic resources. Their specimens reflect the combined efforts of collectors and curators over hundreds of years. For many rare or endangered species, specimens are the only readily available source of DNA. We leveraged specimens from a historical collection to study the evolutionary history of wood-partridges in the genus Dendrortyx. The three Dendrortyx species are found in the highlands of central Mexico and Central America south to Costa Rica. One of these species is endangered, and in general, Dendrortyx are secretive and poorly represented in tissue collections. We extracted DNA from historical museum specimens and sequenced ultraconserved elements (UCEs) and mitochondrial DNA (mtDNA) to assess their phylogeny and divergence times. Phylogenies built from hundreds to thousands of nuclear markers were well resolved and largely congruent with an mtDNA phylogeny. The divergence times revealed an unusually old avian divergence across the Isthmus of Tehuantepec in the Pliocene around 3.6 million years ago. Combined with other recent studies, our results challenge the general pattern that highland bird divergences in Mesoamerica are relatively young and influenced by the Pleistocene glacial cycles compared to the older divergences of reptiles and plants, which are thought to overlap more with periods of mountain formation. We also found evidence for monophyletic genetic lineages in mountain ranges within the widespread D. macroura, which should be investigated further with integrative taxonomic methods. Our study demonstrates the power of museum genomics to provide insight into the evolutionary histories of groups where modern samples are lacking.


Assuntos
Ecossistema , Galliformes/genética , Especiação Genética , Genômica , Museus , Madeira , Animais , Sequência de Bases , Biodiversidade , América Central , DNA Mitocondrial/genética , Florestas , México , Filogenia , Filogeografia
10.
PeerJ ; 6: e6045, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581665

RESUMO

Molecular studies have uncovered significant diversity in the Mexican Highlands, leading to the description of many new endemic species. DNA approaches to this kind of species discovery have included both mitochondrial DNA (mtDNA) sequencing and multilocus genomic methods. While these marker types have often been pitted against one another, there are benefits to deploying them together, as linked mtDNA data can provide the bridge between uncovering lineages through rigorous multilocus genomic analysis and identifying lineages through comparison to existing mtDNA databases. Here, we apply one class of multilocus genomic marker, ultraconserved elements (UCEs), and linked mtDNA data to a species complex of frogs (Sarcohyla bistincta, Hylidae) found in the Mexican Highlands. We generated data from 1,891 UCEs, which contained 1,742 informative SNPs for S. bistincta and closely related species and captured mitochondrial genomes for most samples. Genetic analyses based on both whole loci and SNPs agree there are six to seven distinct lineages within what is currently described as S. bistincta. Phylogenies from UCEs and mtDNA mostly agreed in their topologies, and the few differences suggested a more complex evolutionary history of the mtDNA marker. Our study demonstrates that the Mexican Highlands still hold substantial undescribed diversity, making their conservation a particularly urgent goal. The Trans-Mexican Volcanic Range stands out as a significant geographic feature in Sarcohyla and may have acted as a dispersal corridor for S. bistincta to spread to the north. Combining multilocus genomic data with linked mtDNA data is a useful approach for identifying potential new species and associating them with already described taxa, which will be especially important in groups with undescribed subadult phenotypes and cryptic species.

12.
Genome Announc ; 6(17)2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700165

RESUMO

We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions.

13.
Mol Phylogenet Evol ; 125: 78-84, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29555294

RESUMO

Mountain formation in Mexico has played an important role in the diversification of many Mexican taxa. The Trans-Mexican Volcanic Belt in particular has served as both a cradle of diversification and conduit for dispersal. We investigated the evolutionary history of the Isthmura bellii group of salamanders, a widespread amphibian across the Mexican highlands, using sequence capture of ultraconserved elements. Results suggest that the I. bellii group probably originated in southeastern Mexico in the late Miocene and later dispersed across the Trans-Mexican Volcanic Belt and into the Sierra Madre Occidental. Pre-Pleistocene uplift of the Trans-Volcanic Belt likely promoted early diversification by serving as a mesic land-bridge across central Mexico. These findings highlight the importance of the Trans-Volcanic Belt in generating Mexico's rich biodiversity.


Assuntos
Ecossistema , Filogenia , Urodelos/classificação , Urodelos/genética , Animais , Teorema de Bayes , Calibragem , México , Filogeografia , Fatores de Tempo
14.
Genome Announc ; 5(30)2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751383

RESUMO

We sequenced the Bacillus horikoshii 20a genome, isolated from sediment collected in Cuatro Cienegas, Mexico. We identified genes involved in establishing antagonistic interactions in microbial communities (antibiotic resistance and bacteriocins) and genes related to the metabolism of cyanophycin, a reserve compound and spore matrix material potentially relevant for survival in an oligotrophic environment.

15.
Mol Ecol ; 25(20): 5144-5157, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27543758

RESUMO

Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species-rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well-studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these 'hidden histories' using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation-with-bouts-of-gene-flow will turn out to be a common mode of speciation.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Passeriformes/genética , Animais , DNA Mitocondrial/genética , Genômica , México , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
16.
BMC Evol Biol ; 13: 18, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23343473

RESUMO

BACKGROUND: Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. RESULTS: Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. CONCLUSIONS: Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation.


Assuntos
Evolução Biológica , Gastrópodes/classificação , Filogenia , Animais , Teorema de Bayes , Código de Barras de DNA Taxonômico , Ecossistema , Gastrópodes/genética , Funções Verossimilhança , Modelos Genéticos , Filogeografia
17.
Mol Ecol Resour ; 9(1): 117-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21564576

RESUMO

We isolated and characterized 10 polymorphic microsatellite loci from the Mexican black iguana (Ctenosaura pectinata) and assessed levels of polymorphism in sampling sites located in the northern areas of the species' distribution range. Two to 19 alleles per locus and observed heterozygosity ranging from 0.15 to 0.96 were detected. These markers will be useful to describe population genetic structure, the extent of gene flow in contact zones, to study the mating system of the species and to address conservation genetics issues. Additionally, we evaluated the potential utility of these markers for studies of other species within the genus Ctenosaura (i.e. C. hemilopha, C. similis and C. oaxacana).

18.
Mol Ecol ; 17(14): 3259-75, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18564087

RESUMO

While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.


Assuntos
Variação Genética , Iguanas/genética , Filogenia , Animais , Núcleo Celular/genética , DNA/química , DNA/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Evolução Molecular , Geografia , Iguanas/classificação , México , Dados de Sequência Molecular , Oceano Pacífico , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA