RESUMO
In recent years, it has become possible to calculate binding affinities of compounds bound to proteins via rapid, accurate, precise and reproducible free energy calculations. This is imperative in drug discovery as well as personalized medicine. This approach is based on molecular dynamics (MD) simulations and draws on sequence and structural information of the protein and compound concerned. Free energies are determined by ensemble averages of many MD replicas, each of which requires hundreds of cores and/or GPU accelerators, which are now available on commodity cloud computing platforms; there are also requirements for initial model building and subsequent data analysis stages. To automate the process, we have developed a workflow known as the binding affinity calculator. In this paper, we focus on the software infrastructure and interfaces that we have developed to automate the overall workflow and execute it on commodity cloud platforms, in order to reliably predict their binding affinities on time scales relevant to the domains of application, and illustrate its application to two free energy methods.
RESUMO
Secure access to patient data is becoming of increasing importance, as medical informatics grows in significance, to both assist with population health studies, and patient specific medicine in support of treatment. However, assembling the many different types of data emanating from the clinic is in itself a difficulty, and doing so across national borders compounds the problem. In this paper we present our solution: an easy to use distributed informatics platform embedding a state of the art data warehouse incorporating a secure pseudonymisation system protecting access to personal healthcare data. Using this system, a whole range of patient derived data, from genomics to imaging to clinical records, can be assembled and linked, and then connected with analytics tools that help us to understand the data. Research performed in this environment will have immediate clinical impact for personalised patient healthcare.
Assuntos
Confidencialidade , Conjuntos de Dados como Assunto , Sistemas de Informação , Software , Registros Eletrônicos de Saúde , Humanos , Informática MédicaRESUMO
Multiscale simulations are essential in the biomedical domain to accurately model human physiology. We present a modular approach for designing, constructing and executing multiscale simulations on a wide range of resources, from laptops to petascale supercomputers, including combinations of these. Our work features two multiscale applications, in-stent restenosis and cerebrovascular bloodflow, which combine multiple existing single-scale applications to create a multiscale simulation. These applications can be efficiently coupled, deployed and executed on computers up to the largest (peta) scale, incurring a coupling overhead of 1-10% of the total execution time.
RESUMO
The challenge of modelling cancer presents a major opportunity to improve our ability to reduce mortality from malignant neoplasms, improve treatments and meet the demands associated with the individualization of care needs. This is the central motivation behind the ContraCancrum project. By developing integrated multi-scale cancer models, ContraCancrum is expected to contribute to the advancement of in silico oncology through the optimization of cancer treatment in the patient-individualized context by simulating the response to various therapeutic regimens. The aim of the present paper is to describe a novel paradigm for designing clinically driven multi-scale cancer modelling by bringing together basic science and information technology modules. In addition, the integration of the multi-scale tumour modelling components has led to novel concepts of personalized clinical decision support in the context of predictive oncology, as is also discussed in the paper. Since clinical adaptation is an inelastic prerequisite, a long-term clinical adaptation procedure of the models has been initiated for two tumour types, namely non-small cell lung cancer and glioblastoma multiforme; its current status is briefly summarized.