Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Oecologia ; 204(1): 107-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141067

RESUMO

Stable isotope analysis provides valuable insights into the ecology of long-distance migratory birds during periods spent away from a specific study site. In a previous study, Swedish great reed warblers (Acrocephalus arundinaceus) infected with haemosporidian parasites differed in feather isotope ratios compared to non-infected birds, suggesting that infected and non-infected birds spent the non-breeding season in different locations or habitats. Here, we use a novel dataset comprising geolocator data, isotopes, and haemosporidian infection status of 92 individuals from four Eurasian populations to investigate whether parasite transmission varies with geography or habitats. We found that the probability of harbouring Plasmodium and Leucocytozoon parasites was higher in birds moulting in the eastern region of the non-breeding grounds. However, no geographic pattern occurred for Haemoproteus infections or overall infection status. In contrast to the previous study, we did not find any relationship between feather isotope ratios and overall haemosporidian infection for the entire current dataset. Plasmodium-infected birds had lower feather δ15N values indicating that they occupied more mesic habitats. Leucocytozoon-infected birds had higher feather δ34S values suggesting more coastal sites or wetlands with anoxic sulphate reduction. As the composition and prevalence of haemosporidian parasites differed between the old and the current dataset, we suggest that the differences might be a consequence of temporal dynamics of haemosporidian parasites. Our results emphasize the importance of replicating studies conducted on a single population over a restricted time period, as the patterns can become more complex for data from wider geographical areas and different time periods.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Aves Canoras , Humanos , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Plumas , Muda , Isótopos , Aves Canoras/parasitologia , Prevalência , Filogenia
2.
Parasitol Res ; 122(7): 1689-1693, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099049

RESUMO

The competence of insect vectors to transmit diseases plays a key role in host-parasite interactions and in the dynamics of avian malaria and other haemosporidian infections (Apicomplexa, Haemosporida). However, the presence of parasite DNA in the body of blood-sucking insects does not always constitute evidence for their competence as vectors. In this study, we investigate the susceptibility of wild-caught mosquitoes (Culex spp.) to complete sporogony of Plasmodium relictum (cyt b lineage SGS1) isolated from great tits (Parus major L., 1758). Adult female mosquitoes were collected with a CO2 bait trap overnight. A set of 50 mosquitoes was allowed to feed for 3 h at night on a single great tit infected with P. relictum. This trial was repeated on 6 different birds. The bloodfed mosquitoes that survived (n = 68) were dissected within 1-2 days (for ookinetes, n = 10) and 10-33 days post infection (for oocysts and sporozoites, n = 58) in order to confirm the respective parasite stages in their organs. The experiment confirmed the successful development of P. relictum (cyt b lineage SGS1) to the stage of sporozoites in Culex pipiens L., 1758 (n = 27) and in Culex modestus (n = 2). Our study provides the first evidence that C. modestus is a competent vector of P. relictum isolated from great tits, suggesting that this mosquito species could also play a role in the natural transmission of avian malaria.


Assuntos
Culex , Culicidae , Malária Aviária , Passeriformes , Plasmodium , Animais , Feminino , Malária Aviária/parasitologia , Culex/parasitologia , Esporozoítos , Citocromos b/genética , Mosquitos Vetores/parasitologia , Plasmodium/genética , Glândulas Salivares/parasitologia , Passeriformes/parasitologia
3.
Ecol Evol ; 11(2): 753-762, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520163

RESUMO

How blood parasite infections influence the migration of hosts remains a lively debated issue as past studies found negative, positive, or no response to infections. This particularly applies to small birds, for which monitoring of detailed migration behavior over a whole annual cycle has been technically unachievable so far. Here, we investigate how bird migration is influenced by parasite infections. To this end, we tracked great reed warblers (Acrocephalus arundinaceus) with multisensor loggers, characterized general migration patterns as well as detailed flight bout durations, resting times and flight heights, and related these to the genus and intensity of their avian haemosporidian infections. We found migration distances to be shorter and the onset of autumn migration to be delayed with increasing intensity of blood parasite infection, in particular for birds with Plasmodium and mixed-genus infections. Additionally, the durations of migratory flight bout were prolonged for infected compared to uninfected birds. But since severely infected birds and particularly birds with mixed-genus infections had shorter resting times, initial delays seemed to be compensated for and the timing in other periods of the annual cycle was not compromised by infection. Overall, our multisensor logger approach revealed that avian blood parasites have mostly subtle effects on migratory performance and that effects can occur in specific periods of the year only.

4.
Int J Parasitol ; 50(6-7): 523-532, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32422301

RESUMO

Infectious diseases often vary seasonally in a predictable manner, and seasonality may be responsible for geographical differences in prevalence. In temperate regions, vector-borne parasites such as malaria are expected to evolve lower virulence and a time-varying strategy to invest more in transmission when vectors are available. A previous model of seasonal variation of avian malaria described a double peak in prevalence of Plasmodium parasites in multiple hosts resulting from spring relapses and transmission to susceptible individuals in summer. However, this model was rejected by a study describing different patterns of seasonal variation of two Plasmodium spp. at the same site, with the double peak only apparent when these species were combined. Here, we assessed the seasonal variation in prevalence of haemosporidian parasites (Plasmodium, Haemoproteus and Leucocytozoon) in house sparrows (Passer domesticus) sampled across 1 year at four temperate European sites spanning a latitudinal range of 17°. We showed that parasite prevalence and diversity decreased with increasing latitude, but the parasite communities differed between sites, with only one Plasmodium lineage (P_SGS1) occurring at all sites. Moreover, the nested PCR method commonly used to detect and identify haemosporidian parasites strongly underestimated co-infections of Haemoproteus and Plasmodium, significantly biasing the pattern of seasonal variation, so additional molecular methods were used. Finally, we showed that: (i) seasonal variation in prevalence of haemosporidian parasites varied between study sites and parasite lineages/species/genera, describing further cases where the double peak model is not met; (ii) the seasonal dynamics of single lineages (P_SGS1) varied between sites; and (iii) unexpectedly, seasonality was greatest at the southernmost site, a pattern that was mostly driven by lineage H_PADOM05. Limitations of the genotyping methods and consequences of pooling (parasite lineages, sites and years) in studies of haemosporidian parasites are discussed and recommendations proposed, since these actions may obscure the patterns of prevalence and limit ecological inferences.


Assuntos
Doenças das Aves , Haemosporida , Plasmodium , Infecções Protozoárias em Animais , Estações do Ano , Pardais , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Europa (Continente) , Filogenia , Prevalência , Infecções Protozoárias em Animais/epidemiologia , Pardais/parasitologia
5.
Mov Ecol ; 6: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305904

RESUMO

BACKGROUND: Over the past decade, the miniaturisation of animal borne tags such as geolocators and GPS-transmitters has revolutionized our knowledge of the whereabouts of migratory species. Novel light-weight multi-sensor loggers (1.4 g), which harbour sensors for measuring ambient light intensity, atmospheric pressure, temperature and acceleration, were fixed to two long-distance migrant bird species - eurasian hoopoe (Upupa epops) and great reed warbler (Acrocephalus arundinaceus). Using acceleration and atmospheric pressure data recorded every 5 and 30 min, respectively, we aimed at reconstructing individual diurnal and seasonal patterns of flight activity and flight altitude and thereby, at describing basic, yet hitherto unknown characteristics of migratory flight behaviour. Furthermore, we wanted to characterise the variability in these migration characteristics between individuals, species and migration periods. RESULTS: The flight duration from breeding to sub-Saharan African non-breeding sites and back was more variable within than between the species. Great reed warblers were airborne for a total of 252 flight hours and thus, only slightly longer than eurasian hoopoes with 232 h. With a few exceptions, both species migrated predominantly nocturnally - departure around dusk and landing before dawn. Mean flight altitudes were higher during pre- than during post-breeding migration (median 1100 to 1600 m a.s.l.) and flight above 3000 m occurred regularly with a few great reed warblers exceeding 6000 m a.s.l. (max. 6458 m a.s.l.). Individuals changed flight altitudes repeatedly during a flight bout, indicating a continuous search for (more) favourable flight conditions. CONCLUSIONS: We found high variation between individuals in the flight behaviour parameters measured - a variation that surprisingly even exceeded the variation between the species. More importantly, our results have shown that multi-sensor loggers have the potential to provide detailed insights into many fundamental aspects of individual behaviour in small aerial migrants. Combining the data recorded on the multiple sensors with, e.g., remote sensing data like weather and habitat quality on the spatial and temporal scale will be a great step forward to explore individual decisions during migration and their consequences.

6.
Parasitol Res ; 117(12): 3733-3741, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30232606

RESUMO

Mobile hosts like birds occupy a wide array of habitats in which they encounter various vector and parasite faunas. If the infection probability for vector-borne parasites varies among seasons and biomes, a migratory life can critically influence the infections of a host. The growing body of literature on avian blood parasites suggests that host migrations do not only influence prevalence of infection but can also evoke higher infection intensities and increased parasite diversity in migrant compared to resident host species. We investigated the prevalence, intensity and diversity of Plasmodium and Haemoproteus infections in three closely-related and sympatrically breeding sparrow species with different migration strategies ranging from residential house sparrow and partially migratory tree sparrow to the obligate migratory Spanish sparrow. With a prevalence of 49%, the migratory Spanish sparrows were significantly less frequently infected than the resident house sparrows (82%). The partially migratory tree sparrow showed an intermediate prevalence of 60%. The parasitaemias were similar in all three host species and indicated mostly chronic but also few acute infections. While we found Plasmodium parasites in all three sparrow species, only Spanish sparrows were infected with Haemoproteus parasites in our study. With nine clearly identified parasite lineages in our study and the highest number of lineages per infected individuals (i.e. relative diversity), Spanish sparrows harboured the most diverse parasite fauna. Our results suggest that migration strategies can affect Plasmodium and Haemoproteus infections of sparrows resulting in a lower parasite prevalence and higher parasite diversity in migratory hosts-at least during our host's breeding period. A general scope for all annual cycle periods and across various bird taxa remains to be elucidated.


Assuntos
Migração Animal , Doenças das Aves/parasitologia , Haemosporida/isolamento & purificação , Plasmodium/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Pardais/parasitologia , Animais , Doenças das Aves/epidemiologia , Aves/parasitologia , Europa (Continente)/epidemiologia , Feminino , Haemosporida/classificação , Especificidade de Hospedeiro , Masculino , Plasmodium/classificação , Prevalência , Estações do Ano , Pardais/classificação , Simpatria/genética
7.
Can J Microbiol ; 64(12): 915-924, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30114374

RESUMO

At the crossroad between Europe, Asia, and Africa, Bulgaria is part of the Mediterranean - Black Sea Flyway (MBSF) used by millions of migratory birds. In this study, bird species migrating through Bulgaria were investigated as carriers of zoonotic pathogens. In total, 706 birds belonging to 46 species were checked for the presence of various bacterial pathogens (Campylobacter, Yersinia, Salmonella, Listeria, Escherichia coli, Staphylococcus aureus, Francisella tularensis, Coxiella burnetii, Borrelia burgdorferi, and Brucella spp.). From 673 birds we investigated fecal samples, from the remaining 33, blood samples. We detected Campylobacter 16S rDNA gene in 1.3% of birds, but none were of pathogenic Campylobacter jejuni and Campylobacter coli species. Escherichia coli 16S rDNA gene was found in 8.8% of the birds. Out of 34 birds that transported Yersinia enterocolitica strains (5.05%), only 1 carried a pathogenic isolate. Three birds (0.4%) were carriers of nonpathogenic Salmonella strains. Four avian samples (0.6%) were positive for Listeria monocytogenes and 1 (0.15%) was positive for Brucella spp. None of the birds tested carried the tick-borne pathogens C. burnetii or B. burgdorferi sensu lato. Antibiotic-resistant strains were detected, suggesting that migratory birds could be reservoirs and spreaders of bacterial pathogens as well as antibiotic resistance genes.


Assuntos
Aves/microbiologia , Zoonoses/microbiologia , Migração Animal , Animais , Mar Negro , Reservatórios de Doenças , Farmacorresistência Bacteriana , Fezes/microbiologia
8.
Parasitol Res ; 117(7): 2187-2199, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730725

RESUMO

Avian haemosporidian parasites (Apicomplexa, Haemosporida) are widespread pathogens that cause malaria (Plasmodium spp.) and other haemosporidioses (Haemoproteus spp. and Leucocytozoon spp.) in birds. The Special Protection Area Durankulak Lake (SPA DL) is a coastal lake in northeast Bulgaria, part of the Natura 2000 network that was declared as important area for wintering, breeding and migratory birds. Despite a number of conservation efforts outlined for the SPAs of Natura 2000 network, the potential threats and influences of haemosporidians and other parasites on occurring birds were not considered. In the present study, we aim to investigate the richness of haemosporidian parasites in birds captured in the protected area and to report the parasite species/DNA lineages that undergo local transmission in the region. We used both microscopic examination and PCR-based methods to diagnose haemosporidian infections in juvenile (captured in the year of hatching) and adult birds. The overall prevalence of haemosporidian parasites was significantly higher in the adult birds compared to juveniles. We identified five out of 21 recorded cytochrome b (cyt b) parasite lineages that are locally transmitted in the SPA DL (one of the genus Haemoproteus Kruse, 1890 and four of genus Plasmodium Marchiafava and Celli, 1885): cyt b lineages hRW2 of Haemoproteus belopolskyi, pSGS1 of Plasmodium relictum, pCOLL1, pYWT4 and pPADOM01 of Plasmodium (Haemamoeba) spp. It is likely that the majority of the parasites with local transmission are widespread host generalists and that host exchange is rather frequent among the birds inhabiting SPA DL.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Haemosporida/classificação , Haemosporida/genética , Malária Aviária/epidemiologia , Malária Aviária/transmissão , Plasmodium/genética , Animais , Aves/parasitologia , Bulgária/epidemiologia , Citocromos b/genética , DNA de Protozoário/genética , Haemosporida/isolamento & purificação , Malária Aviária/parasitologia , Reação em Cadeia da Polimerase/veterinária , Prevalência
9.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386365

RESUMO

Blood parasites (Haemosporidia) are thought to impair the flight performance of infected animals, and therefore, infected birds are expected to differ from their non-infected counterparts in migratory capacity. Since haemosporidians invade host erythrocytes, it is commonly assumed that infected individuals will have compromised aerobic capacity, but this has not been examined in free-living birds. We tested if haemosporidian infections affect aerobic performance by examining metabolic rates and exercise endurance in migratory great reed warblers (Acrocephalus arundinaceus) experimentally treated with Plasmodium relictum pGRW04 and in naturally infected wild birds over consecutive life-history stages. We found no effect of acute or chronic infections on resting metabolic rate, maximum metabolic rate or exercise endurance in either experimentally treated or free-living birds. Oxygen consumption rates during rest and while undergoing maximum exercise as well as exercise endurance increased from breeding to migration stages in both infected and non-infected birds. Importantly, phenotypic changes associated with preparation for migration were similarly unaffected by parasitaemia. Consequently, migratory birds experiencing parasitaemia levels typical of chronic infection do not differ in migratory capacity from their uninfected counterparts. Thus, if infected hosts differ from uninfected conspecifics in migration phenology, other mechanisms besides aerobic capacity should be considered.


Assuntos
Migração Animal , Malária Aviária/fisiopatologia , Parasitemia/fisiopatologia , Plasmodium/fisiologia , Aves Canoras , Animais , Bulgária/epidemiologia , Feminino , Interações Hospedeiro-Parasita , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Masculino , Parasitemia/epidemiologia , Parasitemia/parasitologia , Prevalência , Distribuição Aleatória
10.
Infect Genet Evol ; 58: 115-124, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29258785

RESUMO

The diversity of the haemosporidian genera Plasmodium, Haemoproteus and Leucocytozoon in birds from rain forests in Madagascar is characterized combining techniques of PCR and microscopy and based on the examination of 72 host individuals of 23 species in 15 families. High total prevalence of haemosporidians (68%) is detected, with Leucocytozoon infections being predominant (59.7%) and lower comparable prevalence of Plasmodium (18.0%) and Haemoproteus (23.6%) infections. Using mitochondrial cytochrome b (cytb) marker, 23 genetically distinct lineages are identified: 9 of Plasmodium spp., 6 of Haemoproteus spp. and 8 of Leucocytozoon spp. Fifteen of all lineages have not been reported by previous studies. This study provides the first data on haemosporidian morphological and molecular diversity found in the endemic families Vangidae and Bernieriidae. Two haemoproteid species, Haemoproteus fuscae Mello and Fonseca, 1937 and H. killangoi Bennett and Peirce, 1981, are redescribed based on the present samples and linked to the cytb lineages hCELEC01 and hZOSMAD01, respectively. Phylogenetic analysis is performed to test the relationship of the discovered new lineages with parasites from closely related avian hosts suggesting that multiple colonisation of hosts by haemosporidian parasites has occurred on the island.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Floresta Úmida , Animais , Teorema de Bayes , DNA Mitocondrial , DNA de Protozoário , Haemosporida/classificação , Haemosporida/citologia , Madagáscar , Filogenia , Plasmodium
11.
BMC Evol Biol ; 16(1): 237, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27821052

RESUMO

BACKGROUND: Understanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations. RESULTS: Overall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat. CONCLUSIONS: We argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.


Assuntos
Columbidae/genética , África , Animais , Evolução Biológica , Mudança Climática , Columbidae/fisiologia , DNA Mitocondrial/genética , Ecossistema , Europa (Continente) , Estruturas Genéticas , Variação Genética , Genética Populacional , Genômica
12.
Parasitol Int ; 65(6 Pt A): 613-617, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27641106

RESUMO

We present the first survey on prevalence and diversity of haemosporidian parasites of the genera Plasmodium and Haemoproteus in a poorly studied migratory passerine, the semi-collared flycatcher (Ficedula semitorquata). In total, 110 individuals were sampled during two breeding seasons in Eastern Bulgaria. We collected both blood samples for PCR identification and blood films for microscopic identification of haemosporidians. We found six distinctive parasite cyt b lineages present in the blood of the semi-collared flycatcher (three Haemoproteus and three Plasmodium). Two of the lineages, i.e. pWW3 of Plasmodium sp. and hCCF2 of Haemoproteus sp., are recorded for the first time in the family Muscicapidae. The overall prevalence ranged between 12.2 and 15.9% and we did not find co-infections. We hypothesize that the low prevalence of haemosporidians in this species might be linked to its small population size and relatively restricted geographical range.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/isolamento & purificação , Plasmodium/isolamento & purificação , Infecções por Protozoários/epidemiologia , Aves Canoras/parasitologia , Animais , Península Balcânica/epidemiologia , Doenças das Aves/parasitologia , Citocromos b/sangue , Haemosporida/classificação , Plasmodium/classificação , Infecções por Protozoários/parasitologia
13.
Syst Parasitol ; 93(5): 431-49, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27220998

RESUMO

DNA barcoding (molecular characterisation) is a useful tool for describing the taxonomy and systematics of organisms. Over 250 species of avian haemosporidian parasites have been described using morphological characters, yet molecular techniques based on polymerase chain reaction (PCR) suggest this diversity is underestimated. Moreover, molecular techniques are particularly useful for the detection of chronic infections and tissue stages of these parasites. Species delimitation is problematic among haemosporidians, and many questions about the mechanisms and patterns of speciation, host specificity and pathogenicity are still unresolved. Accumulation of additional genetic and morphological information is needed to approach these questions. Here, we combine microscopic examination with PCR-based methods to develop molecular characterisation of Haemoproteus (Parahaemoproteus) manwelli Bennett, 1978 and Haemoproteus (Parahaemoproteus) gavrilovi Valkiunas & Iezhova, 1990, both of which parasitise the bee-eater Merops apiaster L. We also describe a new species, Haemoproteus (Parahaemoproteus) palloris n. sp., from the blood of the willow warbler Phylloscopus trochilus (L.). We performed phylogenetic analyses with a set of mitochondrial cytochrome b (cyt b) gene lineages, which have been linked to parasite morphospecies and are available in the MalAvi database. Our findings show that morphological characters, which have been traditionally used in the description of haemosporidians, exhibit phylogenetic congruence. This study contributes to a better understanding of avian haemosporidian diversity and provides new molecular markers (cyt b and apicoplast gene sequences) for the diagnostics of inadequately investigated haemosporidian infections.


Assuntos
Haemosporida/classificação , Haemosporida/genética , Animais , Apicoplastos/genética , Biodiversidade , Citocromos b/genética , DNA de Protozoário/genética , Haemosporida/ultraestrutura , Passeriformes/parasitologia , Filogenia , Especificidade da Espécie
14.
Ecol Evol ; 6(1): 68-77, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811775

RESUMO

In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.

15.
Infect Genet Evol ; 31: 33-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577987

RESUMO

The knowledge of the diversity of haemosporidian parasites is of primary importance as their representatives include agents of bird malaria. We investigated the occurrence of Haemoproteus spp. and Plasmodium spp. in bird populations from a single locality in the State of Selangor, Peninsular Malaysia, and report on the parasite prevalence of the two genera. A combination of methods (molecular and morphological) was used for detecting these parasites. Seventy-nine bird individuals were caught using mist-nets in July and August 2010 at Gombak Field Station of the University of Malaya, Kuala Lumpur. In total, 23 birds were identified as positive for Haemoproteus or Plasmodium infection and one individual was recognized as carrying mixed infection. The total prevalence of haemosporidians in the collected samples was 30.3%. Infections with parasites of the genus Haemoproteus were predominant compared to those of the genus Plasmodium. In total, 10 new cyt b lineages of Haemoproteus spp. and 3 new cyt b lineages of Plasmodium spp. were recorded in this study. From all recorded haemosporidian lineages (16 in total), 3 were known from previous studies - hCOLL2, hYWT2 and pNILSUN1. Two of them are linked with their corresponding morphospecies - Haemoproteus pallidus (COLL2) and Haemoproteus motacillae (YWT2). The morphological analysis in the present study confirmed the results obtained by the PCR method relative to prevalence, with 25.3% total prevalence of Haemoproteus and Plasmodium parasites. The intensities of infection varied between 0.01% and 19%. Most infections were light, with intensities below 0.1%. The present study is the first molecular survey of the protozoan blood parasites of the order Haemosporida recorded in Malaysia.


Assuntos
Aves/parasitologia , Variação Genética , Haemosporida/classificação , Haemosporida/genética , Animais , Citocromos b/genética , Genes de Protozoários/genética , Geografia , Malásia , Filogenia
16.
Exp Parasitol ; 148: 1-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450775

RESUMO

The interest in experimental studies on avian malaria caused by Plasmodium species has increased recently due to the need of direct information about host-parasite interactions. Numerous important issues (host susceptibility, development of infection, the resistance and tolerance to avian malaria) can be answered using experimental infections. However, specificity of genetically different lineages of malaria parasites and their isolates is largely unknown. This study reviews recent experimental studies and offers additional data about susceptibility of birds to several widespread cytochrome b (cyt b) lineages of Plasmodium species belonging to four subgenera. We exposed two domesticated avian hosts (canaries Serinus canaria and ducklings Anas platyrhynchos) and also 16 species of common wild European birds to malaria infections by intramuscular injection of infected blood and then tested them by microscopic examination and PCR-based methods. Our study confirms former field and experimental observations about low specificity and wide host-range of Plasmodium relictum (lineages SGS1 and GRW11) and P. circumflexum (lineage TURDUS1) belonging to the subgenera Haemamoeba and Giovannolaia, respectively. However, the specificity of different lineages and isolates of the same parasite lineage differed between species of exposed hosts. Several tested Novyella lineages were species specific, with a few cases of successful development in experimentally exposed birds. The majority of reported cases of mortality and high parasitaemia were observed during parasite co-infections. Canaries were susceptible mainly for the species of Haemamoeba and Giovannolaia, but were refractory to the majority of Novyella isolates. Ducklings were susceptible to three malaria infections (SGS1, TURDUS1 and COLL4), but parasitaemia was light (<0.01%) and transient in all exposed birds. This study provides novel information about susceptibility of avian hosts to a wide array of malaria parasite lineages, outlining directions for future experimental research on various aspects of biology and epidemiology of avian malaria.


Assuntos
Canários/parasitologia , Patos/parasitologia , Malária Aviária/imunologia , Plasmodium/patogenicidade , Animais , Animais Selvagens , Teorema de Bayes , Aves , DNA de Protozoário/sangue , DNA de Protozoário/isolamento & purificação , Suscetibilidade a Doenças/veterinária , Eritrócitos/parasitologia , Especificidade de Hospedeiro , Malária Aviária/parasitologia , Parasitemia/veterinária , Filogenia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/imunologia
17.
Ecol Evol ; 4(21): 4150-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25505540

RESUMO

Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad-scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad-scale habitat distribution may partially explain detour performance, but the weak detour-habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude.

18.
Parasitol Res ; 113(12): 4505-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25280514

RESUMO

The occurrence of haemosporidians in biting midges of the genus Culicoides is examined in North-East Bulgaria in order to reveal their potential role for parasite transmission. A PCR-based technique amplifying part of the mitochondrial cytochrome b gene of the parasite is applied on naturally infected biting midges. Totally, 640 parous individuals of four species and 95 blood-fed individuals of six species of Culicoides are examined for the presence of DNA of haemosporidians. Haemosporidian genetic lineages are identified in individuals of three insect species: Culicoides alazanicus (12 lineages, nine lineages of Haemoproteus and three lineages of Plasmodium), Culicoides festivipennis and Culicoides circumscriptus (with two and one lineages of Haemoproteus, respectively). Two genetic lineages of Haemoproteus are recorded in more than one vector species. These results demonstrate variations in the specificity of Haemoproteus genetic lineages to their potential vectors, since some lineages are recorded in a single vector species and others occur in two or more vector species.


Assuntos
Doenças das Aves/transmissão , Ceratopogonidae/parasitologia , Haemosporida/genética , Insetos Vetores/parasitologia , Infecções Protozoárias em Animais/transmissão , Animais , Doenças das Aves/epidemiologia , Aves , Bulgária/epidemiologia , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/classificação , Ceratopogonidae/fisiologia , DNA/química , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Haemosporida/classificação , Haemosporida/fisiologia , Humanos , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Reação em Cadeia da Polimerase , Infecções Protozoárias em Animais/epidemiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Asas de Animais/anatomia & histologia
19.
Parasitol Res ; 113(6): 2251-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24728557

RESUMO

Haemosporidians (Haemosporida) are cosmopolitan in birds. Over 250 species of these blood parasites have been described and named; however, molecular markers remain unidentified for the great majority of them. This is unfortunate because linkage between DNA sequences and identifications based on morphological species can provide important information about patterns of transmission, virulence, and evolutionary biology of these organisms. There is an urgent need to remedy this because few experts possess the knowledge to identify haemosporidian species and few laboratories are involved in training these taxonomic skills. Here, we describe new mitochondrial cytochrome b markers for the polymerase chain reaction (PCR)-based detection of four widespread species of avian Haemoproteus (Haemoproteus hirundinis, Haemoproteus parabelopolskyi, Haemoproteus pastoris, Haemoproteus syrnii) and 1 species of Plasmodium (Plasmodium circumflexum). Illustrations of blood stages of the reported species are given, and morphological and phylogenetic analyses identify the DNA lineages that are associated with these parasites. This study indicates that morphological characters, which have been traditionally used in taxonomy of avian haemosporidian parasites, have a phylogenetic value. Perspectives on haemosporidian diagnostics using microscopic and PCR-based methods are discussed, particularly the difficulties in detection of light parasitemia, coinfections, and abortive parasite development. We emphasize that sensitive PCR amplifies more infections than can be transmitted; it should be used carefully in epidemiology studies, particularly in wildlife parasitology research. Because molecular studies are describing remarkably more parasite diversity than previously expected, the need for traditional taxonomy and traditional biological knowledge is becoming all the more crucial. The linkage of molecular and morphological approaches is worth more of the attention of researchers because this approach provides new knowledge for better understanding insufficiently investigated lethal diseases caused by haemosporidian infections, particularly on the exoerythrocytic (tissue) and vector stages. That requires close collaboration between researchers from different fields with a common interest.


Assuntos
Doenças das Aves/parasitologia , Aves , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Animais Selvagens , Doenças das Aves/sangue , Haemosporida/classificação , Parasitemia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/sangue
20.
Syst Parasitol ; 87(2): 135-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24474037

RESUMO

Two new species of Haemoproteus Kruse, 1890 (Haemosporida, Haemoproteidae) are described: Haemoproteus (Parahaemoproteus) homovelans n. sp. from Grey-faced Woodpecker, Picus canus Gmelin, and Haemoproteus (Parahaemoproteus) concavocentralis n. sp. recorded in Hawfinch, Coccothraustes coccothraustes (Linnaeus), both sampled in Bulgaria. The morphology of the gametocytes and their host-cells are described and mitochondrial cytochrome b (cyt b) gene sequences are generated. Haemoproteus homovelans possesses circumnuclear gametocytes lacking volutin granules. This parasite is particularly similar to Haemoproteus velans Coatney & Roudabush, 1937 also possessing circumnuclear gametocytes that are, however, overfilled with volutin. Haemoproteus concavocentralis can be readily distinguished from all described avian haemoproteids due to the presence of an unfilled concave space between the central part of advanced gametocytes and erythrocyte nucleus. Bayesian phylogenetic analyses of 40 haemosporidian cyt b lineages showed close relationships of H. concavocentralis (hHAWF2) with a group of Haemoproteus spp. possessing gametocytes that are pale-stained with Giemsa. The lineage hPICAN02 of H. homovelans clustered with parasites infecting non-passerine birds. Phylogenetic analyses support the current subgeneric classification of the avian haemoproteids and suggest that cyt b lineage hPIPUB01 (GenBank EU254552) has been incorrectly assigned to Haemoproteus picae Coatney & Roudabush, 1937, a common parasite of corvid birds (Passeriformes). This study emphasises the importance of combining molecular techniques and light microscopy in the identification and field studies of avian haemosporidian parasites. Future development of barcodes for molecular identification of haemoproteids will allow better diagnostics of these infections, particularly in veterinary studies addressing insufficiently investigated tissue pathology caused by these parasites.


Assuntos
Aves/parasitologia , Código de Barras de DNA Taxonômico/normas , Haemosporida , Animais , Bulgária , Citocromos b/genética , Haemosporida/classificação , Haemosporida/citologia , Haemosporida/genética , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA