Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732116

RESUMO

Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.


Assuntos
Citoesqueleto de Actina , Hipertensão , Proteômica , Humanos , Hipertensão/metabolismo , Proteômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Citoesqueleto de Actina/metabolismo , Pré-Hipertensão/metabolismo , Biomarcadores , Proteoma/metabolismo , Adulto , Pressão Sanguínea , Idoso
2.
Front Cardiovasc Med ; 11: 1284114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390445

RESUMO

Introduction: Pre-hypertension is a prevalent condition among the adult population worldwide. It is characterized by asymptomatic elevations in blood pressure beyond normal levels but not yet reaching the threshold for hypertension. If left uncontrolled, pre-hypertension can progress to hypertension, thereby increasing the risk of serious complications such as heart disease, stroke, kidney damage, and others. Objective: The precise mechanisms driving the progression of hypertension remain unknown. Thus, identifying the metabolic changes associated with this condition can provide valuable insights into potential markers or pathways implicated in the development of hypertension. Methods: In this study, we utilized untargeted metabolomics profiling, which examines over 1,000 metabolites to identify novel metabolites contributing to the progression from pre-hypertension to hypertension. Data were collected from 323 participants through Qatar Biobank. Results: By comparing metabolic profiles between pre-hypertensive, hypertensive and normotensive individuals, six metabolites including stearidonate, hexadecadienoate, N6-carbamoylthreonyladenosine, 9 and 13-S-hydroxyoctadecadienoic acid (HODE), 2,3-dihydroxy-5-methylthio- 4-pentenoate (DMTPA), and linolenate were found to be associated with increased risk of hypertension, in both discovery and validation cohorts. Moreover, these metabolites showed a significant diagnostic performance with area under curve >0.7. Conclusion: These findings suggest possible biomarkers that can predict the risk of progression from pre-hypertension to hypertension. This will aid in early detection, diagnosis, and management of this disease as well as its associated complications.

3.
Int J Cardiol ; 389: 131238, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536420

RESUMO

Hemodynamic shear stress is one of the major factors that are involved in the pathogenesis of many cardiovascular diseases including atherosclerosis and abdominal aortic aneurysm (AAA), through its modulatory effect on the endothelial cell's redox homeostasis and mechanosensitive gene expression. Among important mechanisms, oxidative stress, endoplasmic reticulum stress activation, and the subsequent endothelial dysfunction are attributed to disturbed blood flow and low shear stress in the vascular curvature and bifurcations which are considered atheroprone regions and aneurysm occurrence spots. Many pathways were shown to be involved in AAA progression. Of particular interest from recent findings is, the (Nrf2)/Keap-1 pathway, where Nrf2 is a transcription factor that has antioxidant properties and is strongly associated with several CVDs, yet, the exact mechanism by which Nrf2 alleviates CVDs still to be elucidated. Nrf2 expression is closely affected by shear stress and was shown to participate in AAA. In the current review paper, we discussed the link between disturbed hemodynamics and its effect on Nrf2 as a mechanosensitive gene and its role in the development of endothelial dysfunction which is linked to the progression of AAA.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Aterosclerose/genética , Hemodinâmica , Aneurisma da Aorta Abdominal/metabolismo , Estresse Mecânico
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902310

RESUMO

A timely and adequate response to stress is inherently present in each cell and is important for maintaining the proper functioning of the cell in changing intracellular and extracellular environments. Disruptions in the functioning or coordination of defense mechanisms against cellular stress can reduce the tolerance of cells to stress and lead to the development of various pathologies. Aging also reduces the effectiveness of these defense mechanisms and results in the accumulation of cellular lesions leading to senescence or death of the cells. Endothelial cells and cardiomyocytes are particularly exposed to changing environments. Pathologies related to metabolism and dynamics of caloric intake, hemodynamics, and oxygenation, such as diabetes, hypertension, and atherosclerosis, can overwhelm endothelial cells and cardiomyocytes with cellular stress to produce cardiovascular disease. The ability to cope with stress depends on the expression of endogenous stress-inducible molecules. Sestrin2 (SESN2) is an evolutionary conserved stress-inducible cytoprotective protein whose expression is increased in response to and defend against different types of cellular stress. SESN2 fights back the stress by increasing the supply of antioxidants, temporarily holding the stressful anabolic reactions, and increasing autophagy while maintaining the growth factor and insulin signaling. If the stress and the damage are beyond repair, SESN2 can serve as a safety valve to signal apoptosis. The expression of SESN2 decreases with age and its levels are associated with cardiovascular disease and many age-related pathologies. Maintaining sufficient levels or activity of SESN2 can in principle prevent the cardiovascular system from aging and disease.


Assuntos
Doenças Cardiovasculares , Humanos , Células Endoteliais , Transdução de Sinais , Envelhecimento , Apoptose , Sestrinas
5.
Microbes Infect ; 24(4): 104946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093552

RESUMO

On quotidian basis, living beings work out an armistice with their microbial flora and a scuffle with invading pathogens to maintain a normal state of health. Although producing virulence factors and escaping the host's immune machinery are the paramount tools used by pathogens in their "arm race" against the host; here, we provide insight into another facet of pathogenic embitterment by presenting evidence of the ability of enteric pathogens to exhibit pathogenicity through modulating metabolic homeostasis in Drosophila melanogaster. We report that Escherichia coli and Shigella sonnei orally infected flies exhibit lipid droplet deprivation from the fat body, irregular accumulation of lipid droplets in the midgut, and significant elevation of systemic glucose and triglyceride levels. Our findings indicate that these detected metabolic alterations in infected flies could be attributed to differential regulation of peptide hormones known to be crucial for lipid metabolism and insulin signaling. Gaining a proper understanding of infection-induced alterations succours in curbing the pathogenesis of enteric diseases and sets the stage for promising therapeutic approaches to quarry infection-induced metabolic disorders.


Assuntos
Drosophila melanogaster , Metabolismo dos Lipídeos , Animais , Drosophila melanogaster/fisiologia , Homeostase , Gotículas Lipídicas/metabolismo , Transdução de Sinais
6.
Semin Cancer Biol ; 83: 177-196, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32877761

RESUMO

Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/ß-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.


Assuntos
Neoplasias , Receptores de Hidrocarboneto Arílico , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Epigênese Genética , Humanos , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Eur J Pharmacol ; 919: 174701, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954233

RESUMO

Hyperglycemia exerts various harmful effects on the vasculature. Studies have shown an association between the levels of the adipokines leptin and adiponectin (APN) and vascular complications in diabetes mellitus. The aim of our study was to investigate the molecular mechanisms mediated by APN and leptin that are involved in hyperglycemia-induced vascular remodeling, especially at the level of oxidative stress and actin cytoskeleton dynamics. Rat aorta organ culture was used to investigate the effect of hyperglycemia on APN and leptin protein expression in vascular smooth muscle cells (VSMCs) using Western blot analysis and immunohistochemistry. Hyperglycemia lead to a significant increase in APN synthesis in VSMCs, mainly through caveolae, but this increase failed to provide vascular protection because of the decreased expression of APN receptors, especially AdipoR2, which was assessed by qPCR. In addition, hyperglycemia significantly upregulated leptin expression in VSMCs through caveolae and the RhoA/ROCK pathway. These variations lead to a marked increase in reactive oxygen species (ROS) production, detected by dihydroethidium (DHE) staining, and in NADPH oxidase type 4 (Nox4) expression. Moreover, Nox4 mediated the synthesis of APN in hyperglycemia in VSMCs. Finally, hyperglycemia activated the RhoA/ROCK pathway and subsequently induced the polymerization of globular actin (G-actin) into filamentous actin (F-actin), decreasing the G/F-actin ratio. Taken together, these data show that hyperglycemia increases oxidative stress and changes actin cytoskeleton dynamics in the aorta via caveolae, favoring vascular remodeling.


Assuntos
Cavéolas/metabolismo , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Adiponectina/metabolismo , Animais , Modelos Animais de Doenças , Leptina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Remodelação Vascular
8.
J Inflamm Res ; 14: 5349-5365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703273

RESUMO

Cardiac remodeling is the process by which the heart adapts to stressful stimuli, such as hypertension and ischemia/reperfusion; it ultimately leads to heart failure upon long-term exposure. Autophagy, a cellular catabolic process that was originally considered as a mechanism of cell death in response to detrimental stimuli, is thought to be one of the main mechanisms that controls cardiac remodeling and induces heart failure. Dysregulation of the adipokines leptin and adiponectin, which plays essential roles in lipid and glucose metabolism, and in the pathophysiology of the neuroendocrine and cardiovascular systems, has been shown to affect the autophagic response in the heart and to contribute to accelerate cardiac remodeling. The obesity-associated protein leptin is a pro-inflammatory, tumor-promoting adipocytokine whose elevated levels in obesity are associated with acute cardiovascular events, and obesity-related hypertension. Adiponectin exerts anti-inflammatory and anti-tumor effects, and its reduced levels in obesity correlate with the pathogenesis of obesity-associated cardiovascular diseases. Leptin- and adiponectin-induced changes in autophagic flux have been linked to cardiac remodeling and heart failure. In this review, we describe the different molecular mechanisms of hyperleptinemia- and hypoadiponectinemia-mediated pathogenesis of cardiac remodeling and the involvement of autophagy in this process. A better understanding of the roles of leptin, adiponectin, and autophagy in cardiac functions and remodeling, and the exact signal transduction pathways by which they contribute to cardiac diseases may well lead to discovery of new therapeutic agents for the treatment of cardiovascular remodeling.

9.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502168

RESUMO

Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.


Assuntos
Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/metabolismo , Suscetibilidade a Doenças , Poluentes Ambientais/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Poluição do Ar/efeitos adversos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/psicologia , Biomarcadores , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Poluição Ambiental/efeitos adversos , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais
10.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34296297

RESUMO

Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub­pathways in PTP1B­mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress­mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4­dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress­induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase­12 and poly (ADP­Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress­mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.


Assuntos
Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ditiotreitol/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
11.
Eur J Pharmacol ; 907: 174247, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34116045

RESUMO

Endoplasmic reticulum (ER) stress is an inflammatory response that contributes to endothelial cell dysfunction, a hallmark of cardiovascular diseases, in close interplay with oxidative stress. Recently, Sestrin2 (SESN2) emerged as a novel stress-inducible protein protecting cells from oxidative stress. We investigated here, for the first time, the impact of SESN2 suppression on oxidative stress and cell survival in human endothelial cells subjected to pharmacologically (thapsigargin)-induced ER stress and studied the underlying cellular pathways. We found that SESN2 silencing, though did not specifically induce ER stress, it aggravated the effects of thapsigargin-induced ER stress on oxidative stress and cell survival. This was associated with a dysregulation of Nrf-2, AMPK and mTORC1 signaling pathways. Furthermore, SESN2 silencing aggravated, in an additive manner, apoptosis caused by thapsigargin. Importantly, SESN2 silencing, unlike thapsigargin, caused a dramatic decrease in protein expression and phosphorylation of Akt, a critical pro-survival hub and component of the AMPK/Akt/mTORC1 axis. Our findings suggest that patients with conditions characterized by ER stress activation, such as diabetes, may be at higher risk for cardiovascular complications if their endogenous ability to stimulate and/or maintain expression levels of SESN2 is disturbed or impaired. Therefore, identifying novel or repurposing existing pharmacotherapies to enhance and/or maintain SESN2 expression levels would be beneficial in these conditions.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Quinases Ativadas por AMP , Animais , Células Endoteliais , Alvo Mecanístico do Complexo 1 de Rapamicina , Transdução de Sinais
12.
J Neurotrauma ; 38(3): 330-341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32993425

RESUMO

Peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. Its underlying neuronal mechanisms are still illusive, but pre-clinical studies using animal models of PNP including the L5-spinal nerve axotomy (L5-SNA) model, suggest that it is partly caused by excitability changes in dorsal root ganglion (DRG) neurons. L5-SNA results in two DRG neuronal groups: (1) axotomized/damaged neurons in L5- plus some in L4-DRGs, and (2) ipsilateral L4-neurons with intact/uninjured fibers intermingling with degenerating L5-fibers. The axotomized neurons are deprived of peripherally derived trophic factors and degenerate causing neuroinflammation, whereas the uninjured L4-neuorns are subject to increased trophic factors and neuroinflammation associated with Wallerian degeneration of axotomized L5-nerve fibers. Whether these two groups of DRG neurons exhibit similar or distinct electrophysiological changes after L5-SNA remains unresolved. Conflicting evidence for this may result from some studies assuming that all L4-fibers are undamaged. Here, we recorded somatic action potentials (APs) intracellularly from C- and A-fiber L4/L5 DRG neurons in vivo, to examine our hypothesis that L5-SNA would induce distinct electrophysiological changes in the two populations of DRG neurons. Consistent with this hypothesis, we found (7 days post-SNA), in SNA rats with established pain hypersensitivity, slower AP kinetics in axotomized L5-neurons and faster AP kinetics in L4-nociceptive neurons including decreased rise time in Aδ-and Aß-fiber nociceptors, and after-hyperpolarization duration in Aß-fiber nociceptors. We also found several changes in axotomized L5-neurons but not in L4-nociceptive neurons, and some changes in L4-nociceptive but not L5-neurons. The faster AP kinetics (decreased refractory period) in L4-nociceptive neurons that are consistent with their reported hyperexcitability may lead to repetitive firing and thus provide enhanced afferent input necessary for initiating and/or maintaining PNP development. The changes in axotomized L5-neurons may contribute to the central mechanisms of PNP via enhanced neurotransmitter release in the central nervous system (CNS).


Assuntos
Axotomia , Gânglios Espinais/fisiopatologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Nociceptores/fisiologia , Nervos Espinhais/cirurgia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Vértebras Lombares , Ratos
13.
Front Cardiovasc Med ; 7: 584791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363219

RESUMO

Circulating extracellular vesicles (EVs) are recognized as biomarkers and effectors of endothelial dysfunction, the initiating step of cardiovascular abnormalities. Among these EVs, microparticles (MPs) are vesicles directly released from the cytoplasmic membrane of activated cells. MPs were shown to induce endothelial dysfunction through the activation of endoplasmic reticulum (ER) stress. However, it is not known whether ER stress can lead to MPs release from endothelial cells and what biological messages are carried by these MPs. Therefore, we aimed to assess the impact of ER stress on MPs shedding from endothelial cells, and to investigate their effects on endothelial cell function. EA.hy926 endothelial cells or human umbilical vein endothelial cells (HUVECs) were treated for 24 h with ER stress inducers, thapsigargin or dithiothreitol (DTT), in the presence or absence of 4-Phenylbutyric acid (PBA), a chemical chaperone to inhibit ER stress. Then, MPs were isolated and used to treat cells (10-20 µg/mL) for 24-48 h before assessing ER stress response, angiogenic capacity, nitric oxide (NO) release, autophagy and apoptosis. ER stress (thapsigargin or DDT)-generated MPs did not differ quantitatively from controls; however, they carried deleterious messages for endothelial function. Exposure of endothelial cells to ER stress-generated MPs increased mRNA and protein expression of key ER stress markers, indicating a vicious circle activation of ER stress. ER stress (thapsigargin)-generated MPs impaired the angiogenic capacity of HUVECs and reduced NO release, indicating an impaired endothelial function. While ER stress (thapsigargin)-generated MPs altered the release of inflammatory cytokines, they did not, however, affect autophagy or apoptosis in HUVECs. This work enhances the general understanding of the deleterious effects carried out by MPs in medical conditions where ER stress is sustainably activated such as diabetes and metabolic syndrome.

14.
Biomedicines ; 8(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265898

RESUMO

Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator's expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.

15.
Biomedicines ; 8(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053883

RESUMO

Upon increased demand for protein synthesis, accumulation of misfolded and/or unfolded proteins within the endoplasmic reticulum (ER), a pro-survival response is activated termed unfolded protein response (UPR), aiming at restoring the proper function of the ER. Prolonged activation of the UPR leads, however, to ER stress, a cellular state that contributes to the pathogenesis of various chronic diseases including obesity and diabetes. ER stress response by itself can result in endothelial dysfunction, a hallmark of cardiovascular disease, through various cellular mechanisms including apoptosis, insulin resistance, inflammation and oxidative stress. Extracellular vesicles (EVs), particularly large EVs (lEVs) commonly referred to as microparticles (MPs), are membrane vesicles. They are considered as a fingerprint of their originating cells, carrying a variety of molecular components of their parent cells. lEVs are emerging as major contributors to endothelial cell dysfunction in various metabolic disease conditions. However, the mechanisms underpinning the role of lEVs in endothelial dysfunction are not fully elucidated. Recently, ER stress emerged as a bridging molecular link between lEVs and endothelial cell dysfunction. Therefore, in the current review, we summarized the roles of lEVs and ER stress in endothelial dysfunction and discussed the molecular crosstalk and relationship between ER stress and lEVs in endothelial dysfunction.

16.
Neurosci Lett ; 736: 135277, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32739272

RESUMO

Diabetic peripheral neuropathic pain (DPNP), the most debilitating complication of diabetes mellitus, is resistant to current therapy. The pathogenesis of DPNP is still elusive, but several mechanisms have been proposed including abnormal hyperexcitability of dorsal root ganglion (DRG) neurons. The underlying molecular mechanisms of such aberrant hyperexcitability are incompletely understood. Using the streptozotocin (STZ) rat model of DPNP, we have recently provided evidence implicating neuronal Kv7 channels that normally exert a powerful stabilizing influence on neuronal excitability, in the abnormal hyperexcitability of DRG neurons and in pain hypersensitivity associated with DPNP. In the present immunohistochemical study, we sought to determine whether Kv7.2 and/or Kv7.5 channel expression is altered in DRG neurons in STZ rats. We found 35 days post-STZ: (1) a significant decrease in Kv7.5-immunoreactivity in small (<30 µm) DRG neurons (both IB4 positive and IB4 negative) and medium-sized (30-40 µm) neurons, and (2) a significant increase in Kv7.2-immunoreactivity in small (<30 µm) neurons, and a non-significant increase in medium/large neurons. The decrease in Kv7.5 channel expression in small and medium-sized DRG neurons in STZ rats is likely to contribute to the mechanisms of hyperexcitability of these neurons and thereby to the resulting pain hypersensitivity associated with DPNP. The upregulation of Kv7.2 subunit in small DRG neurons may be an activity dependent compensatory mechanism to limit STZ-induced hyperexcitability of DRG neurons and the associated pain hypersensitivity. The findings support the notion that Kv7 channels may represent a novel target for DPNP treatment.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/metabolismo , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Gânglios Espinais/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
17.
Oxid Med Cell Longev ; 2020: 6425782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566092

RESUMO

Hypertension induces vascular hypertrophy, which changes blood vessels structurally and functionally, leading to reduced tissue perfusion and further hypertension. It is also associated with dysregulated levels of the circulating adipokines leptin and adiponectin (APN). Leptin is an obesity-associated hormone that promotes vascular smooth muscle cell (VSMC) hypertrophy. APN is a cardioprotective hormone that has been shown to attenuate hypertrophic cardiomyopathy. In this study, we investigated the molecular mechanisms of hypertension-induced VSMC remodeling and the involvement of leptin and APN in this process. To mimic hypertension, the rat portal vein (RPV) was mechanically stretched, and the protective effects of APN on mechanical stretch-induced vascular remodeling and the molecular mechanisms involved were examined by using 10 µg/ml APN. Mechanically stretching the RPV significantly decreased APN protein expression after 24 hours and APN mRNA expression in a time-dependent manner in VSMCs. The mRNA expression of the APN receptors AdipoR1, AdipoR2, and T-cadherin significantly increased after 15 hours of stretch. The ratio of APN/leptin expression in VSMCs significantly decreased after 24 hours of mechanical stretch. Stretching the RPV for 3 days increased the weight and [3H]-leucine incorporation significantly, whereas APN significantly reduced hypertrophy in mechanically stretched vessels. Stretching the RPV for 10 minutes significantly decreased phosphorylation of LKB1, AMPK, and eNOS, while APN significantly increased p-LKB1, p-AMPK, and p-eNOS in stretched vessels. Mechanical stretch significantly increased p-ERK1/2 after 10 minutes, whereas APN significantly reduced stretch-induced ERK1/2 phosphorylation. Stretching the RPV also significantly increased ROS generation after 1 hour, whereas APN significantly decreased mechanical stretch-induced ROS production. Exogenous leptin (3.1 nM) markedly increased GATA-4 nuclear translocation in VSMCs, whereas APN significantly attenuated leptin-induced GATA-4 nuclear translocation. Our results decipher molecular mechanisms of APN-induced attenuation of mechanical stretch-mediated vascular hypertrophy, with the promising potential of ultimately translating this protective hormone into the clinic.


Assuntos
Adiponectina/metabolismo , Estresse Mecânico , Remodelação Vascular , Quinases Proteína-Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Adiponectina/genética , Animais , Núcleo Celular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Transcrição GATA4/metabolismo , Hipertrofia , Leptina/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Veia Porta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Remodelação Vascular/genética
18.
Front Neurosci ; 14: 530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528247

RESUMO

Diabetic peripheral neuropathic pain (DPNP) is the most devastating complication of diabetes mellitus. Unfortunately, successful therapy for DPNP remains a challenge because its pathogenesis is still elusive. However, DPNP is believed to be due partly to abnormal hyperexcitability of dorsal root ganglion (DRG) neurons, but the relative contributions of specific functional subtypes remain largely unknown. Here, using the strepotozotocin (STZ) rat model of DPNP induced by a STZ injection (60 mg/kg, i.p), and intracellular recordings of action potentials (APs) from DRG neurons in anesthetized rats, we examined electrophysiological changes in C-and Aß-nociceptive and Aß-low threshold mechanoreceptive (LTM) neurons that may contribute to DPNP. Compared with control, we found in STZ-rats with established pain hypersensitivity (5 weeks post-STZ) several significant changes including: (a) A 23% increase in the incidence of spontaneous activity (SA) in Aß-LTMs (but not C-mechanosensitive nociceptors) that may cause dysesthesias/paresthesia suffered by DPNP patients, (b) membrane hyperpolarization and a ∼85% reduction in SA rate in Aß-LTMs by Kv7 channel activation with retigabine (6 mg/kg, i.v.) suggesting that Kv7/M channels may be involved in mechanisms of SA generation in Aß-LTMs, (c) decreases in AP duration and in duration and amplitude of afterhyperpolarization (AHP) in C-and/or Aß-nociceptors. These faster AP and AHP kinetics may lead to repetitive firing and an increase in afferent input to the CNS and thereby contribute to DPNP development, and (d) a decrease in the electrical thresholds of Aß-nociceptors that may contribute to their sensitization, and thus to the resulting hypersensitivity associated with DPNP.

19.
Chem Res Toxicol ; 33(7): 1719-1728, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32370496

RESUMO

Gefitinib (GEF) is a selective inhibitor of the epidermal growth factor receptor (EGFR) used to treat non-small cell lung cancer. Yet, few cases of cardiotoxicity have been reported. However, the role of the PTEN/Akt/FoxO3a pathway, which mediates GEF anticancer activity, in GEF cardiotoxicity remains unclear. For this purpose, in vitro H9c2 cells and in vivo rat cardiomyocytes were utilized as study models. Treatment of H9c2 cells and Sprague-Dawley rats with GEF significantly induced the expression of hypertrophic and apoptotic markers at mRNA and protein levels with an increased plasma level of troponin. This was accompanied by induction of autophagy and mitochondrial dysfunction in H9c2 cells. Inhibition of cardiac EGFR activity and Akt cellular content of in vitro and in vivo rat cardiomyocytes by GEF increased PTEN and FoxO3a gene expression and cellular content. Importantly, treatment of H9c2 cells with PI3K/Akt inhibitor increased PTEN and FoxO3a mRNA expression associated with potentiation of GEF cardiotoxicity. In addition, by using LC-MS/MS, we showed that GEF is metabolized in the rat heart microsomes into one cyanide- and two methoxylamine-adduct reactive metabolites, where their formation was entirely blocked by CYP1A1 inhibitor, α-naphthoflavone. The current study concludes that GEF induces cardiotoxicity through modulating the expression and function of the cardiac PTEN/AKT/FoxO3a pathway and the formation of CYP1A1-mediated reactive metabolites.


Assuntos
Antineoplásicos/efeitos adversos , Cardiotoxicidade/metabolismo , Receptores ErbB/antagonistas & inibidores , Proteína Forkhead Box O3/metabolismo , Gefitinibe/efeitos adversos , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotoxicidade/genética , Linhagem Celular , Receptores ErbB/metabolismo , Proteína Forkhead Box O3/genética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos/metabolismo , Miocárdio/metabolismo , PTEN Fosfo-Hidrolase/genética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
20.
Onco Targets Ther ; 13: 13357-13370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414642

RESUMO

INTRODUCTION: Venetoclax (VCX) is a selective BCL-2 inhibitor approved for the treatment of leukemia and lymphoma. However, the mechanisms of anti-cancer effect of VCX either as a monotherapy or in combination with other chemotherapeutic agents against breast cancer need investigation. METHODS: Breast cancer cell lines with different molecular subtypes (MDA-MB-231, MCF-7, and SKBR-3) were treated with different concentrations of VCX for indicated time points. The expression of cell proliferative, apoptotic, and autophagy genes was determined by qRT-PCR and Western blot analyses. In addition, the percentage of MDA-MB-231 cells underwent apoptosis, expressed higher oxidative stress levels, and the changes in the cell cycle phases were determined by flow cytometry. RESULTS: Treatment of human breast cancer cells with increasing concentrations of VCX caused a significant decrease in cells growth and proliferation. This effect was associated with a significant increase in the percentage of apoptotic MDA-MB-231 cells and in the expression of the apoptotic genes, caspase 3, caspase 7, and BAX, with inhibition of anti-apoptotic gene, BCL-2 levels. Induction of apoptosis by VCX treatment induced cell cycle arrest at G0/G1 phase with inhibition of cell proliferator genes, cyclin D1 and E2F1. Furthermore, VCX treatment increased the formation of reactive oxygen species and the expression level of autophagy markers, Beclin 1 and LC3-II. Importantly, these cellular changes by VCX increased the chemo-sensitivity of MDA-MB-231 cells to doxorubicin. DISCUSSION: The present study explores the molecular mechanisms of VCX-mediated inhibitory effects on the growth and proliferation of TNBC MDA-MB-231 cells through the induction of apoptosis, cell cycle arrest, and autophagy. The study also explores the role of BCL-2 as a novel targeted therapy for breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA