Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Med (Lausanne) ; 11: 1285772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698784

RESUMO

JAK/STAT pathway signalling is associated with both chronic inflammatory conditions such as psoriasis and haematological malignancies such as the myeloproliferative neoplasms (MPNs). Here we describe a 73yo female patient with a history of chronic plaque psoriasis, post-essential thrombocythemia myelofibrosis (MF) and a quality of life substantially impacted by both conditions. We report that 15 mg oral Methotrexate (MTX) weekly as a monotherapy is well tolerated, provides a substantial clinical improvement for both conditions and significantly improves quality of life. We suggest that the recently identified mechanism of action of MTX as a JAK inhibitor is likely to explain this efficacy and suggest that repurposing MTX for MPNs may represent a clinical- and cost-effective therapeutic option.

2.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629022

RESUMO

Ankyrin repeat and single KH domain-containing protein 1 (ANKHD1) is a large, scaffolding protein composed of two stretches of ankyrin repeat domains that mediate protein-protein interactions and a KH domain that mediates RNA or single-stranded DNA binding. ANKHD1 interacts with proteins in several crucial signalling pathways, including receptor tyrosine kinase, JAK/STAT, mechanosensitive Hippo (YAP/TAZ), and p21. Studies into the role of ANKHD1 in cancer cell lines demonstrate a crucial role in driving uncontrolled cellular proliferation and growth, enhanced tumorigenicity, cell cycle progression through the S phase, and increased epithelial-to-mesenchymal transition. Furthermore, at a clinical level, the increased expression of ANKHD1 has been associated with greater tumour infiltration, increased metastasis, and larger tumours. Elevated ANKHD1 resulted in poorer prognosis, more aggressive growth, and a decrease in patient survival in numerous cancer types. This review aims to gather the current knowledge about ANKHD1 and explore its molecular properties and functions, focusing on the protein's role in cancer at both a cellular and clinical level.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Hiperplasia , Agressão , Repetição de Anquirina , Divisão Celular , Proteínas de Ligação a RNA
3.
Front Immunol ; 14: 1310117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283366

RESUMO

In Drosophila blood, plasmatocytes of the haemocyte lineage represent the functional equivalent of vertebrate macrophages and have become an established in vivo model with which to study macrophage function and behaviour. However, the use of plasmatocytes as a macrophage model has been limited by a historical perspective that plasmatocytes represent a homogenous population of cells, in contrast to the high levels of heterogeneity of vertebrate macrophages. Recently, a number of groups have reported transcriptomic approaches which suggest the existence of plasmatocyte heterogeneity, while we identified enhancer elements that identify subpopulations of plasmatocytes which exhibit potentially pro-inflammatory behaviours, suggesting conservation of plasmatocyte heterogeneity in Drosophila. These plasmatocyte subpopulations exhibit enhanced responses to wounds and decreased rates of efferocytosis when compared to the overall plasmatocyte population. Interestingly, increasing the phagocytic requirement placed upon plasmatocytes is sufficient to decrease the size of these plasmatocyte subpopulations in the embryo. However, the mechanistic basis for this response was unclear. Here, we examine how plasmatocyte subpopulations are modulated by apoptotic cell clearance (efferocytosis) demands and associated signalling pathways. We show that loss of the phosphatidylserine receptor Simu prevents an increased phagocytic burden from modulating specific subpopulation cells, while blocking other apoptotic cell receptors revealed no such rescue. This suggests that Simu-dependent efferocytosis is specifically involved in determining fate of particular subpopulations. Supportive of our original finding, mutations in amo (the Drosophila homolog of PKD2), a calcium-permeable channel which operates downstream of Simu, phenocopy simu mutants. Furthermore, we show that Amo is involved in the acidification of the apoptotic cell-containing phagosomes, suggesting that this reduction in pH may be associated with macrophage reprogramming. Additionally, our results also identify Ecdysone receptor signalling, a pathway related to control of cell death during developmental transitions, as a controller of plasmatocyte subpopulation identity. Overall, these results identify fundamental pathways involved in the specification of plasmatocyte subpopulations and so further validate Drosophila plasmatocytes as a heterogeneous population of macrophage-like cells within this important developmental and immune model.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Eferocitose , Macrófagos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
BMJ Case Rep ; 15(10)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288826

RESUMO

Nasopharyngeal carcinoma can present with epistaxis, cervical lymphadenopathy, audiological symptoms secondary to eustachian tube dysfunction, pain, or neurological symptoms from tumours directly invading the skull base. It is unusual for patients to present with indirect systemic manifestations. Paraneoplastic neurological syndrome can precede clinically overt malignancy by up to 5 years; therefore, a combination of thorough clinical, laboratory and radiological investigations is required to reach a diagnosis. Intravenous immunoglobulin and steroids might improve neurological symptoms initially and prevent irreversible neuronal damage, but treatment of the underlying cancer is important for long-term resolution. Our case adds to a small but growing body of literature related to anti-Ri antibodies, opsoclonus-myoclonus syndrome presentations, and is the first reported association of this combination with nasopharyngeal carcinoma.


Assuntos
Neoplasias Nasofaríngeas , Síndrome de Opsoclonia-Mioclonia , Síndromes Paraneoplásicas , Humanos , Síndrome de Opsoclonia-Mioclonia/diagnóstico , Carcinoma Nasofaríngeo/complicações , Imunoglobulinas Intravenosas/uso terapêutico , Síndromes Paraneoplásicas/tratamento farmacológico , Autoanticorpos , Neoplasias Nasofaríngeas/complicações , Neoplasias Nasofaríngeas/tratamento farmacológico
5.
J Gerontol A Biol Sci Med Sci ; 77(8): 1494-1502, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34137822

RESUMO

Over recent decades, increased longevity has not been paralleled by extended health span, resulting in more years spent with multiple diseases in older age. As such, interventions to improve health span are urgently required. Zoledronate (Zol) is a nitrogen-containing bisphosphonate, which inhibits the farnesyl pyrophosphate synthase enzyme, central to the mevalonate pathway. It is already used clinically to prevent fractures in osteoporotic patients, who have been reported to derive unexpected and unexplained survival benefits. Using Drosophila as a model we determined the effects of Zol on life span, parameters of health span (climbing ability and intestinal dysplasia), and the ability to confer resistance to oxidative stress using a combination of genetically manipulated Drosophila strains and Western blotting. Our study shows that Zol extended life span, improved climbing activity, and reduced intestinal epithelial dysplasia and permeability with age. Mechanistic studies showed that Zol conferred resistance to oxidative stress and reduced accumulation of X-ray-induced DNA damage via inhibition of farnesyl pyrophosphate synthase. Moreover, Zol was associated with inhibition of phosphorylated AKT in the mammalian traget of rapamycin pathway downstream of the mevalonate pathway and required dFOXO for its action, both molecules associated with increased longevity. Taken together, our work indicates that Zol, a drug already widely used to prevent osteoporosis and dosed only once a year, modulates important mechanisms of aging. Its repurposing holds great promise as a treatment to improve health span.


Assuntos
Proteínas de Drosophila , Ácido Mevalônico , Animais , Linhagem Celular Tumoral , Drosophila , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead , Imidazóis/farmacologia , Mamíferos , Ácido Mevalônico/metabolismo , Ácido Zoledrônico/farmacologia
6.
Elife ; 102021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885361

RESUMO

Vertebrate macrophages are a highly heterogeneous cell population, but while Drosophila blood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by the Calnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity in Drosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use of Drosophila to study macrophage heterogeneity in vivo.


Assuntos
Apoptose , Drosophila melanogaster/fisiologia , Macrófagos/fisiologia , Animais , Apoptose/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Expressão Gênica , Larva/crescimento & desenvolvimento , Larva/fisiologia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
7.
J Cell Sci ; 133(19)2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32917740

RESUMO

The JAK/STAT pathway is an essential signalling cascade required for multiple processes during development and for adult homeostasis. A key question in understanding this pathway is how it is regulated in different cell contexts. Here, we have examined how endocytic processing contributes to signalling by the single cytokine receptor in Drosophila melanogaster cells, Domeless. We identify an evolutionarily conserved di-leucine (di-Leu) motif that is required for Domeless internalisation and show that endocytosis is required for activation of a subset of Domeless targets. Our data indicate that endocytosis both qualitatively and quantitatively regulates Domeless signalling. STAT92E, the single STAT transcription factor in Drosophila, appears to be the target of endocytic regulation, and our studies show that phosphorylation of STAT92E on Tyr704, although necessary, is not always sufficient for target transcription. Finally, we identify a conserved residue, Thr702, which is essential for Tyr704 phosphorylation. Taken together, our findings identify previously unknown aspects of JAK/STAT pathway regulation likely to play key roles in the spatial and temporal regulation of signalling in vivo.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Janus Quinases/genética , Janus Quinases/metabolismo , Ligantes , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo
8.
Biochem Soc Trans ; 48(2): 559-567, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32239204

RESUMO

Developed over 70 years ago as an anti-folate chemotherapy agent, methotrexate (MTX) is a WHO 'essential medicine' that is now widely employed as a first-line treatment in auto-immune, inflammatory diseases such as rheumatoid arthritis (RA), psoriasis and Crone's disease. When used for these diseases patients typically take a once weekly low-dose of MTX - a therapy which provides effective inflammatory control to tens of millions of people worldwide. While undoubtedly effective, our understanding of the anti-inflammatory mechanism-of-action of low-dose MTX is incomplete. In particular, the long-held dogma that this disease-modifying anti-rheumatic drug (DMARD) acts via the folate pathway does not appear to hold up to scrutiny. Recently, MTX has been identified as an inhibitor of JAK/STAT pathway activity, a suggestion supported by many independent threads of evidence. Intriguingly, the JAK/STAT pathway is central to both the inflammatory and immune systems and is a pathway already targeted by other RA treatments. We suggest that the DMARD activity of MTX is likely to be largely mediated by its inhibition of JAK/STAT pathway signalling while many of its side effects are likely associated with the folate pathway. This insight into the mechanism-of-action of MTX opens the possibility for repurposing this low cost, safe and effective drug for the treatment of other JAK/STAT pathway-associated diseases.


Assuntos
Antirreumáticos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , Metotrexato/farmacologia , Artrite Reumatoide/tratamento farmacológico , Linhagem Celular , Doença de Crohn/tratamento farmacológico , Ácido Fólico/metabolismo , Humanos , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Psoríase/tratamento farmacológico , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
10.
J Leukoc Biol ; 106(5): 1063-1068, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31313387

RESUMO

Methotrexate (MTX) is recognized as the anchor drug in the algorithm treating chronic arthritis (RA, psoriatic arthritis), as well as a steroid sparing agent in other inflammatory conditions (polymyalgia rheumatica, vasculitis, scleroderma). Its main mechanism of action has been related to the increase in extracellular adenosine, which leads to the effects of A2A receptor in M1 macrophages that dampens TNFα and IL12 production and increases IL1Ra and TNFRp75. By acting on A2B receptor on M2 macrophages it enhances IL10 synthesis and inhibits NF-kB signaling. MTX has also been shown to exert JAK inhibition of JAK2 and JAK1 when tested in Drosophila melanogaster as a model of kinase activity and in human cell lines (nodular sclerosis Hodgkin's lymphoma and acute myeloid leukemia cell lines). These effects may explain why MTX leads to clinical effects similar to anti-TNFα biologics in monotherapy, but is less effective when compared to anti-IL6R in monotherapy, which acting upstream exerts major effects downstream on the JAK1-STAT3 pathway. The MTX effects on JAK1/JAK2 inhibition also allows to understand why the combination of MTX with Leflunomide, or JAK1/JAK3 inhibitor leads to better clinical outcomes than monotherapy, while the combination with JAK1/JAK2 or JAK1 specific inhibitors does not seem to exert additive clinical benefit.


Assuntos
Artrite Psoriásica/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Leflunomida/uso terapêutico , Metotrexato/uso terapêutico , Animais , Artrite Psoriásica/imunologia , Artrite Psoriásica/mortalidade , Quimioterapia Combinada , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/imunologia , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/imunologia , Febre Reumática/imunologia , Febre Reumática/patologia , Fator de Transcrição STAT3/imunologia
11.
J Cell Sci ; 131(13)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29848658

RESUMO

Cytokine receptors often act via the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway to form a signalling cascade that is essential for processes such as haematopoiesis, immune responses and tissue homeostasis. In order to transduce ligand activation, cytokine receptors must dimerise. However, mechanisms regulating their dimerisation are poorly understood. In order to better understand the processes regulating cytokine receptor levels, and their activity and dimerisation, we analysed the highly conserved JAK/STAT pathway in Drosophila, which acts via a single receptor, known as Domeless. We performed a genome-wide RNAi screen in Drosophila cells, identifying MASK as a positive regulator of Domeless dimerisation and protein levels. We show that MASK is able to regulate receptor levels and JAK/STAT signalling both in vitro and in vivo We also show that its human homologue, ANKHD1, is also able to regulate JAK/STAT signalling and the levels of a subset of pathway receptors in human cells. Taken together, our results identify MASK as a novel regulator of cytokine receptor levels, and suggest functional conservation, which may have implications for human health.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Genoma de Inseto , Interferência de RNA , Receptores de Citocinas/genética , Receptores de Interleucina/química , Motivos de Aminoácidos , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
12.
J Biol Chem ; 293(25): 9570-9579, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29695508

RESUMO

Clear cell renal cell carcinoma (ccRCC) represents the most common kidney cancer worldwide. Increased cell proliferation associated with abnormal microRNA (miRNA) regulation are hallmarks of carcinogenesis. Ankyrin repeat and single KH domain 1 (ANKHD1) is a highly conserved protein found to interact with core cancer pathways in Drosophila; however, its involvement in RCC is completely unexplored. Quantitative PCR studies coupled with large-scale genomics data sets demonstrated that ANKHD1 is significantly up-regulated in kidneys of RCC patients when compared with healthy controls. Cell cycle analysis revealed that ANKHD1 is an essential factor for RCC cell division. To understand the molecular mechanism(s) utilized by ANKHD1 to drive proliferation, we performed bioinformatics analyses that revealed that ANKHD1 contains a putative miRNA-binding motif. We screened 48 miRNAs with tumor-enhancing or -suppressing activities and found that ANKHD1 binds to and regulates three tumor-suppressing miRNAs (i.e. miR-29a, miR-205, and miR-196a). RNA-immunoprecipitation assays demonstrated that ANKHD1 physically interacts with its target miRNAs via a single K-homology domain, located in the C terminus of the protein. Functionally, we discovered that ANKHD1 positively drives ccRCC cell mitosis via binding to and suppressing mainly miR-29a and to a lesser degree via miR-196a/205, leading to up-regulation in proliferative genes such as CCDN1. Collectively, these data identify ANKHD1 as a new regulator of ccRCC proliferation via specific miRNA interactions.


Assuntos
Carcinoma de Células Renais/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Estudos de Casos e Controles , Movimento Celular , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Prognóstico , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas
14.
Mol Biol Cell ; 27(3): 434-41, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26658615

RESUMO

Transmembrane receptors interact with extracellular ligands to transduce intracellular signaling cascades, modulate target gene expression, and regulate processes such as proliferation, apoptosis, differentiation, and homeostasis. As a consequence, aberrant signaling events often underlie human disease. Whereas the vertebrate JAK/STAT signaling cascade is transduced via multiple receptor combinations, the Drosophila pathway has only one full-length signaling receptor, Domeless (Dome), and a single negatively acting receptor, Eye Transformer/Latran (Et/Lat). Here we investigate the molecular mechanisms underlying Et/Lat activity. We demonstrate that Et/Lat negatively regulates the JAK/STAT pathway activity and can bind to Dome, thus reducing Dome:Dome homodimerization by creating signaling-incompetent Dome:Et/Lat heterodimers. Surprisingly, we find that Et/Lat is able to bind to both JAK and STAT92E but, despite the presence of putative cytokine-binding motifs, does not detectably interact with pathway ligands. We find that Et/Lat is trafficked through the endocytic machinery for lysosomal degradation but at a much slower rate than Dome, a difference that may enhance its ability to sequester Dome into signaling-incompetent complexes. Our data offer new insights into the molecular mechanism and regulation of Et/Lat in Drosophila that may inform our understanding of how short receptors function in other organisms.


Assuntos
Proteínas de Drosophila/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Endocitose , Janus Quinases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteólise , Receptores de Interleucina/metabolismo , Fatores de Transcrição STAT/metabolismo , Transcrição Gênica
15.
Lancet ; 385 Suppl 1: S98, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312921

RESUMO

BACKGROUND: The myeloproliferative neoplasms are a group of haematological malignancies characterised by pathological activation of the JAK/STAT (Janus kinase and signal transducer and activator of transcription) intracellular signalling pathway. 50-95% of patients have an acquired mutation (JAK2V617F) causing constitutive activation of JAK2. Our aim was to find new treatments for myeloproliferative neoplasms by identifying compounds that suppress JAK/STAT pathway activation. METHODS: We used a luciferase-based transcriptional assay in the low complexity Drosophila model system to screen a library of 2000 small molecules for modulators of JAK/STAT pathway activation. Screen hits were validated with western blotting in the HDLM-2 Hodgkin's lymphoma cell line. The HEL cell line, in which constitutive JAK/STAT pathway activation is caused by JAK2V617F, was used to determine the relevance of screen hits for treatment of myeloproliferative neoplasms. FINDINGS: Methotrexate and the chemically similar drug aminopterin were independently identified as strong inhibitors of the Drosophila JAK/STAT pathway, an effect conserved to human cells. Methotrexate did not affect protein phosphorylation in other intracellular signalling pathways. Methotrexate caused significant suppression of JAK/STAT activation in HEL cells at a concentration equivalent to that seen in patients taking low-dose oral methotrexate (p≤0·001). INTERPRETATION: Our results suggest that methotrexate is a promising treatment for myeloproliferative neoplasms that could be translated into clinical trials after assessment in primary cells. These results are particularly relevant in myelofibrosis. Inhibitors of JAK1/2 improve symptoms and prolong life in myelofibrosis, but their use is limited by cost. Other existing therapies for myelofibrosis appear no more effective than placebo. Methotrexate might bring the benefits of JAK/STAT pathway inhibition at a lower cost. FUNDING: Cancer Research UK, Yorkshire Cancer Research, UK Medical Research Council, Wellcome Trust, EU Framework Cancer Pathways.

16.
PLoS One ; 10(7): e0130078, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131691

RESUMO

BACKGROUND: The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. METHODS & FINDINGS: We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. CONCLUSIONS: Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential.


Assuntos
Drosophila melanogaster/metabolismo , Inibidores Enzimáticos/farmacologia , Janus Quinase 2/metabolismo , Metotrexato/farmacologia , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Drosophila melanogaster/genética , Janus Quinase 2/genética
18.
J Cell Sci ; 127(Pt 1): 101-10, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24163435

RESUMO

JAK/STAT signalling regulates many essential developmental processes including cell proliferation and haematopoiesis, whereas its inappropriate activation is associated with the majority of myeloproliferative neoplasias and numerous cancers. Furthermore, high levels of JAK/STAT pathway signalling have also been associated with enhanced metastatic invasion by cancerous cells. Strikingly, gain-of-function mutations in the single Drosophila JAK homologue, Hopscotch, result in haemocyte neoplasia, inappropriate differentiation and the formation of melanised haemocyte-derived 'tumour' masses; phenotypes that are partly orthologous to human gain-of-function JAK2-associated pathologies. Here we show that Gα73B, a novel JAK/STAT pathway target gene, is necessary for JAK/STAT-mediated tumour formation in flies. In addition, although Gα73B does not affect haemocyte differentiation, it does regulate haemocyte morphology and motility under non-pathological conditions. We show that Gα73B is required for constitutive, but not injury-induced, activation of Rho1 and for the localisation of Rho1 into filopodia upon haemocyte activation. Consistent with these results, we also show that Rho1 interacts genetically with JAK/STAT signalling, and that wild-type levels of Rho1 are necessary for tumour formation. Our findings link JAK/STAT transcriptional outputs, Gα73B activity and Rho1-dependent cytoskeletal rearrangements and cell motility, therefore connecting a pathway associated with cancer with a marker indicative of invasiveness. As such, we suggest a mechanism by which JAK/STAT pathway signalling may promote metastasis.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Hematopoese/genética , Hemócitos/metabolismo , Janus Quinases/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP/genética , Animais , Movimento Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hemócitos/patologia , Janus Quinases/metabolismo , Masculino , Pseudópodes/metabolismo , Pseudópodes/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
19.
JAKSTAT ; 2(3): e25353, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24069564

RESUMO

The conservation of signaling cascades between humans and Drosophila, over more than 500 million years of evolutionary time, means that the genetic tractability of the fly can be used to its full advantage to understand the functional requirements for JAK-STAT pathway signaling across species. Here we review the background to how the pathway was first identified and the first characterization of JAK-STAT pathway phenotypes in the Drosophila system, highlighting the molecular, functional, and disease-related conservation of the pathway.

20.
Development ; 140(18): 3858-68, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23946443

RESUMO

Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (FasIII) represent a key mediator of morphogenesis. Using the embryonic Drosophila hindgut as an in vivo model for organogenesis, we show that the tightening of hindgut curvature that normally occurs between embryonic stage 12 and 15 to generate the characteristic shepherd's crook shape is dependent on localised JAK/STAT pathway activation. This localised pathway activity drives the expression of FasIII leading to its subcellular lateralisation at a stage before formation of septate junctions. Additionally, we show that JAK/STAT- and FasIII-dependent morphogenesis also regulates folds within the third instar wing imaginal disc. We show that FasIII forms homophilic intercellular interactions that promote intercellular adhesion in vivo and in cultured cells. To explore these findings, we have developed a mathematical model of the developing hindgut, based on the differential interfacial tension hypothesis (DITH) linking intercellular adhesion and localised surface tension. Our model suggests that increased intercellular adhesion provided by FasIII can be sufficient to drive the tightening of tube curvature observed. Taken together, these results identify a conserved molecular mechanism that directly links JAK/STAT pathway signalling to intercellular adhesion and that sculpts both tubular and planar epithelial shape.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/citologia , Animais , Adesão Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Janus Quinases/metabolismo , Modelos Biológicos , Transporte Proteico , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Frações Subcelulares/metabolismo , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA