Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 112022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997072

RESUMO

Quantitative descriptions of animal behavior are essential to study the neural substrates of cognitive and emotional processes. Analyses of naturalistic behaviors are often performed by hand or with expensive, inflexible commercial software. Recently, machine learning methods for markerless pose estimation enabled automated tracking of freely moving animals, including in labs with limited coding expertise. However, classifying specific behaviors based on pose data requires additional computational analyses and remains a significant challenge for many groups. We developed BehaviorDEPOT (DEcoding behavior based on POsitional Tracking), a simple, flexible software program that can detect behavior from video timeseries and can analyze the results of experimental assays. BehaviorDEPOT calculates kinematic and postural statistics from keypoint tracking data and creates heuristics that reliably detect behaviors. It requires no programming experience and is applicable to a wide range of behaviors and experimental designs. We provide several hard-coded heuristics. Our freezing detection heuristic achieves above 90% accuracy in videos of mice and rats, including those wearing tethered head-mounts. BehaviorDEPOT also helps researchers develop their own heuristics and incorporate them into the software's graphical interface. Behavioral data is stored framewise for easy alignment with neural data. We demonstrate the immediate utility and flexibility of BehaviorDEPOT using popular assays including fear conditioning, decision-making in a T-maze, open field, elevated plus maze, and novel object exploration.


Assuntos
Comportamento Animal , Software , Animais , Fenômenos Biomecânicos , Aprendizado de Máquina , Ratos
2.
J Neurosci ; 40(36): 6910-6926, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32769107

RESUMO

Here we examine what effects acute manipulation of the cerebellum, a canonically motor structure, can have on the hippocampus, a canonically cognitive structure. In male and female mice, acute perturbation of the cerebellar vermis (lobule 4/5) or simplex produced reliable and specific effects in hippocampal function at cellular, population, and behavioral levels, including evoked local field potentials, increased hippocampal cFos expression, and altered CA1 calcium event rate, amplitudes, and correlated activity. We additionally noted a selective deficit on an object location memory task, which requires objection-location pairing. We therefore combined cerebellar optogenetic stimulation and CA1 calcium imaging with an object-exploration task, and found that cerebellar stimulation reduced the representation of place fields near objects, and prevented a shift in representation to the novel location when an object was moved. Together, these results clearly demonstrate that acute modulation of the cerebellum alters hippocampal function, and further illustrates that the cerebellum can influence cognitive domains.SIGNIFICANCE STATEMENT The cerebellum, a canonically motor-related structure, is being increasingly recognized for its influence on nonmotor functions and structures. The hippocampus is a brain region critical for cognitive functions, such as episodic memory and spatial navigation. To investigate how modulation of the cerebellum may impact the hippocampus, we stimulated two sites of the cerebellar cortex and examined hippocampal function at multiple levels. We found that cerebellar stimulation strongly modulates hippocampal activity, disrupts spatial memory, and alters object-location processing. Therefore, a canonically cognitive brain area, the hippocampus, is sensitive to cerebellar modulation.


Assuntos
Cerebelo/fisiologia , Hipocampo/fisiologia , Animais , Cálcio/metabolismo , Potenciais Evocados , Comportamento Exploratório , Hipocampo/metabolismo , Memória , Camundongos , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Espacial
3.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131968

RESUMO

Here we describe a novel mouse model of temporal lobe epilepsy (TLE) that moves the site of kainate injection from the rodent dorsal hippocampus (corresponding to the human posterior hippocampus) to the ventral hippocampus (corresponding to the human anterior hippocampus). We compare the phenotypes of this new model-with respect to seizures, cognitive impairment, affective deficits, and histopathology-to the standard dorsal intrahippocampal kainate model. Our results demonstrate that histopathological measures of granule cell dispersion and mossy fiber sprouting maximize near the site of kainate injection. Somewhat surprisingly, both the dorsal and ventral models exhibit similar spatial memory impairments in addition to similar electrographic and behavioral seizure burdens. In contrast, we find a more pronounced affective (anhedonic) phenotype specifically in the ventral model. These results demonstrate that the ventral intrahippocampal kainic acid model recapitulates critical pathologies of the dorsal model while providing a means to further study affective phenotypes such as depression in TLE.


Assuntos
Anedonia , Ansiedade , Comportamento Animal , Disfunção Cognitiva , Modelos Animais de Doenças , Epilepsia do Lobo Temporal , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Ansiedade/induzido quimicamente , Ansiedade/etiologia , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Giro Denteado/efeitos dos fármacos , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/fisiopatologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Feminino , Humanos , Ácido Caínico/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/efeitos dos fármacos
6.
Behav Brain Res ; 291: 164-171, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25979787

RESUMO

Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.


Assuntos
Ácidos Araquidônicos/metabolismo , Aprendizagem da Esquiva/fisiologia , Endocanabinoides/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Memória/fisiologia , Alcamidas Poli-Insaturadas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Benzamidas/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Masculino , Memória/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacologia , Propofol/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores de GABA-A/metabolismo , Comportamento Social
7.
Int J Neuropsychopharmacol ; 18(9)2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25820841

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is the most common known inherited form of intellectual disability and the single genomic cause of autism spectrum disorders. It is caused by the absence of a fragile X mental retardation gene (Fmr1) product, FMRP, an RNA-binding translation suppressor. Elevated rates of protein synthesis in the brain and an imbalance between synaptic signaling via glutamate and γ-aminobutyric acid (GABA) are both considered important in the pathogenesis of FXS. In a mouse model of FXS (Fmr1 knockout [KO]), treatment with R-baclofen reversed some behavioral and biochemical phenotypes. A remaining crucial question is whether R-baclofen is also able to reverse increased brain protein synthesis rates. METHODS: To answer this question, we measured regional rates of cerebral protein synthesis in vivo with the L-[1-(14)C]leucine method in vehicle- and R-baclofen-treated wildtype and Fmr1 KO mice. We further probed signaling pathways involved in the regulation of protein synthesis. RESULTS: Acute R-baclofen administration corrected elevated protein synthesis and reduced deficits on a test of social behavior in adult Fmr1 KO mice. It also suppressed activity of the mammalian target of rapamycin pathway, particularly in synaptosome-enriched fractions, but it had no effect on extracellular-regulated kinase 1/2 activity. Ninety min after R-baclofen treatment, we observed an increase in metabotropic glutamate receptor 5 expression in the frontal cortex, a finding that may shed light on the tolerance observed in human studies with this drug. CONCLUSIONS: Our results suggest that treatment via activation of the GABA (GABA receptor subtype B) system warrants further study in patients with FXS.


Assuntos
Baclofeno/farmacologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Lobo Frontal/efeitos dos fármacos , Agonistas dos Receptores de GABA-B/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Comportamento Social , Serina-Treonina Quinases TOR/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Lobo Frontal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos
8.
ASN Neuro ; 6(5)2014.
Artigo em Inglês | MEDLINE | ID: mdl-25290064

RESUMO

The (CGG)n-repeat in the 5'-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%-90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.


Assuntos
Córtex Cerebral/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Expansão das Repetições de Trinucleotídeos/genética , Análise de Variância , Animais , Autorradiografia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA