Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 22(1): 289, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649604

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma initiation is most frequently caused by Kras mutations. RESULTS: Here, we apply biological, biochemical, and network biology methods to validate GEMM-derived cell models using inducible KrasG12D expression. We describe the time-dependent, chromatin remodeling program that impacts function during early oncogenic signaling. We find that the KrasG12D-induced transcriptional response is dominated by downregulated expression concordant with layers of epigenetic events. More open chromatin characterizes the ATAC-seq profile associated with a smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that promoter hypermethylation does not account for the silencing of the extensive gene promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization plays little role in this early transcriptional program. Notably, both gene activation and silencing primarily depend on the marking of genes with a combination of H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these datasets shows that KrasG12D regulates its transcriptional program primarily through unique super-enhancers and enhancers, and marking specific gene promoters and bodies. We also report chromatin remodeling across genomic areas that, although not contributing directly to cis-gene transcription, are likely important for KrasG12D functions. CONCLUSIONS: In summary, we report a comprehensive, time-dependent, and coordinated early epigenomic program for KrasG12D in pancreatic cells, which is mechanistically relevant to understanding chromatin remodeling events underlying transcriptional outcomes needed for the function of this oncogene.


Assuntos
Reprogramação Celular/genética , Cromatina/metabolismo , Epigênese Genética , Genes ras , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular , Núcleo Celular/genética , Metilação de DNA , Genoma , Código das Histonas , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
2.
Front Cell Dev Biol ; 9: 681153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249932

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, painful disease with a 5-year survival rate of only 9%. Recent evidence indicates that distinct epigenomic landscapes underlie PDAC progression, identifying the H3K9me pathway as important to its pathobiology. Here, we delineate the role of Euchromatic Histone-lysine N-Methyltransferase 2 (EHMT2), the enzyme that generates H3K9me, as a downstream effector of oncogenic KRAS during PDAC initiation and pancreatitis-associated promotion. EHMT2 inactivation in pancreatic cells reduces H3K9me2 and antagonizes Kras G12D -mediated acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN) formation in both the Pdx1-Cre and P48 Cre/+ Kras G12D mouse models. Ex vivo acinar explants also show impaired EGFR-KRAS-MAPK pathway-mediated ADM upon EHMT2 deletion. Notably, Kras G12D increases EHMT2 protein levels and EHMT2-EHMT1-WIZ complex formation. Transcriptome analysis reveals that EHMT2 inactivation upregulates a cell cycle inhibitory gene expression network that converges on the Cdkn1a/p21-Chek2 pathway. Congruently, pancreas tissue from Kras G12D animals with EHMT2 inactivation have increased P21 protein levels and enhanced senescence. Furthermore, loss of EHMT2 reduces inflammatory cell infiltration typically induced during Kras G12D -mediated initiation. The inhibitory effect on Kras G12D -induced growth is maintained in the pancreatitis-accelerated model, while simultaneously modifying immunoregulatory gene networks that also contribute to carcinogenesis. This study outlines the existence of a novel KRAS-EHMT2 pathway that is critical for mediating the growth-promoting and immunoregulatory effects of this oncogene in vivo, extending human observations to support a pathophysiological role for the H3K9me pathway in PDAC.

3.
Laryngoscope ; 131(11): 2590-2597, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33844317

RESUMO

OBJECTIVES: Otitis media (OM) is the most common pediatric diagnosis in the United States. However, our understanding of the molecular pathogenesis of OM remains relatively poor. Investigation of molecular pathways involved in OM may improve the understanding of this disease process and elucidate novel therapeutic targets. In this study, RNA sequencing (RNA-Seq) was used to discern cellular changes associated with OME compared to healthy middle ear epithelium (MEE). STUDY DESIGN: Ex vivo case-control translational. METHODS: Middle ear epithelia was collected from five pediatric patients diagnosed with OME undergoing tympanostomy tube placement and five otherwise healthy pediatric patients undergoing cochlear implantation. Specimens underwent RNA-Seq and pathways analyses. RESULTS: A total of 1,292 genes exhibited differential expression in MEE from OME patients compared to controls including genes involved in inflammation, immune response to bacterial OM pathogens, mucociliary clearance, regulation of proliferation and transformation, and auditory cell differentiation. Top networks identified in OME were organismal injury and abnormalities, cell morphology, and auditory disease. Top Ingenuity canonical pathways identified were axonal guidance signaling, which contains genes associated with auditory development and disease and nicotine degradation II and III pathways. Associated upstream regulators included ß-estradiol, dexamethasone, and G-protein-coupled estrogen receptor-1 (GPER1), which are associated with otoprotection or inflammation during insult. CONCLUSIONS: RNA-Seq demonstrates differential gene expression in MEE from patients with OME compared to healthy controls with important implications for infection susceptibility, hearing loss, and a role for tobacco exposure in the development and/or severity of OME in pediatric patients. LEVEL OF EVIDENCE: 4 Laryngoscope, 131:2590-2597, 2021.


Assuntos
Orelha Média/patologia , Epitélio/patologia , Redes Reguladoras de Genes/imunologia , Otite Média/genética , Audiometria , Biópsia , Estudos de Casos e Controles , Criança , Pré-Escolar , Orelha Média/cirurgia , Feminino , Predisposição Genética para Doença , Voluntários Saudáveis , Humanos , Lactente , Masculino , Ventilação da Orelha Média , Otite Média/diagnóstico , Otite Média/imunologia , Otite Média/cirurgia , Mapas de Interação de Proteínas/genética , RNA-Seq , Índice de Gravidade de Doença
4.
Laryngoscope ; 131(1): 121-129, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32202667

RESUMO

OBJECTIVE: Laryngopharyngeal reflux (LPR) is a common affliction that contributes to laryngeal inflammation, symptoms that impact quality of life, and life-threatening illnesses such as cancer. Effective treatment strategies for LPR are lacking. Pepsin is a proinflammatory and carcinogenic element of refluxate. Investigation of molecular pathways involved in pepsin-mediated damage may lead to identification of novel biomarkers and therapeutic targets for LPR. In this study, RNA sequencing was used to examine changes in human laryngeal epithelial cells following brief pepsin insult. Cells were immortalized to generate a model to aid future study of laryngeal injury and therapeutics. STUDY DESIGN: In vitro translational. METHODS: Laryngeal epithelial cells were cultured from a patient without signs or symptoms of LPR or laryngeal cancer. Cells were treated with 0.1 mg/ml pepsin for 1 hour or normal growth media (control) prior to RNA sequencing. Cells were immortalized via HPV E6/7 and characterized by microscopy, immunohistochemistry, G-banding, and soft agar assay. RESULTS: Three hundred ninety-seven genes exhibited differences in expression with pepsin treatment (P < .05). Pathway analysis revealed association with cancer and related signaling processes including dysregulation of cancer-associated molecules, Metastasis-Associated Lung Adenocarcinoma Transcript 1 and KRT82, and the long-noncoding RNA, lipoprotein receptor-related protein 1 (LRP1)-AS, which regulates the putative pepsin receptor LRP1. CONCLUSIONS: A single, brief exposure to pepsin activated cancer-associated signaling pathways in laryngeal cells in vitro, revealing novel mechanisms by which chronic reflux may contribute to carcinogenesis. The cell line developed herein represents a novel tool in which to investigate pepsin-dysregulated pathways identified by RNA sequencing and disparities of tumor proneness of laryngeal subsites. LEVEL OF EVIDENCE: N/A Laryngoscope, 131:121-129, 2021.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Neoplasias Laríngeas/induzido quimicamente , Neoplasias Laríngeas/genética , Laringe/citologia , Pepsina A/farmacologia , Análise de Sequência de RNA , Células Cultivadas , Humanos
5.
Circ Res ; 125(12): 1087-1102, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31625810

RESUMO

RATIONALE: A hallmark of chronic inflammatory disorders is persistence of proinflammatory macrophages in diseased tissues. In atherosclerosis, this is associated with dyslipidemia and oxidative stress, but mechanisms linking these phenomena to macrophage activation remain incompletely understood. OBJECTIVE: To investigate mechanisms linking dyslipidemia, oxidative stress, and macrophage activation through modulation of immunometabolism and to explore therapeutic potential targeting specific metabolic pathways. METHODS AND RESULTS: Using a combination of biochemical, immunologic, and ex vivo cell metabolic studies, we report that CD36 mediates a mitochondrial metabolic switch from oxidative phosphorylation to superoxide production in response to its ligand, oxidized LDL (low-density lipoprotein). Mitochondrial-specific inhibition of superoxide inhibited oxidized LDL-induced NF-κB (nuclear factor-κB) activation and inflammatory cytokine generation. RNA sequencing, flow cytometry, 3H-labeled palmitic acid uptake, lipidomic analysis, confocal and electron microscopy imaging, and functional energetics revealed that oxidized LDL upregulated effectors of long-chain fatty acid uptake and mitochondrial import, while downregulating fatty acid oxidation and inhibiting ATP5A (ATP synthase F1 subunit alpha)-an electron transport chain component. The combined effect is long-chain fatty acid accumulation, alteration of mitochondrial structure and function, repurposing of the electron transport chain to superoxide production, and NF-κB activation. Apoe null mice challenged with high-fat diet showed similar metabolic changes in circulating Ly6C+ monocytes and peritoneal macrophages, along with increased CD36 expression. Moreover, mitochondrial reactive oxygen species were positively correlated with CD36 expression in aortic lesional macrophages. CONCLUSIONS: These findings reveal that oxidized LDL/CD36 signaling in macrophages links dysregulated fatty acid metabolism to oxidative stress from the mitochondria, which drives chronic inflammation. Thus, targeting to CD36 and its downstream effectors may serve as potential new strategies against chronic inflammatory diseases such as atherosclerosis.


Assuntos
Antígenos CD36/deficiência , Reprogramação Celular/fisiologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Animais , Antígenos CD36/genética , Células Cultivadas , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Metabolismo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética
6.
Hum Mol Genet ; 26(17): 3442-3450, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854705

RESUMO

Oligopeptides are important markers of protein metabolism, as they are cleaved from larger polypeptides and proteins. Genetic association studies may help elucidate their origin and function. In 1,552 European Americans and 1,872 African Americans of the Atherosclerosis Risk in Communities study, we performed whole-genome and whole-exome sequencing and measured serum levels of 25 peptides. Common variants (minor allele frequency > 5%) were analysed individually. We grouped low-frequency variants (minor allele frequency ≤ 5%) by a genome-wide sliding window using region-based aggregate tests. Furthermore, low-frequency regulatory variants were grouped by gene, as were functional coding variants. All analyses were performed separately in each ancestry group and then meta-analysed. We identified 22 common variant associations with peptide levels (P-value < 4.2 × 10-10), including 16 novel gene-peptide pairs. Notably, variants in kinin-kallikrein genes KNG1, F12, KLKB1, and ACE were associated with several different peptides. Variants in KLKB1 and ACE were associated with a fragment of complement component 3f. Both common variants and low-frequency coding variants in CPN1 were associated with a fibrinogen cleavage peptide. Four sliding windows were significantly associated with peptide levels (P-value < 4.2 × 10-10). Our results highlight the importance of the kinin-kallikrein system in the regulation of serum peptide levels, strengthen the evidence for a broad link between the kinin-kallikrein and complement systems, and suggest a role of CPN1 in the conversion of fibrinogen to fibrin.


Assuntos
Aterosclerose/genética , Aterosclerose/metabolismo , Negro ou Afro-Americano/genética , Alelos , Aterosclerose/sangue , Exoma/genética , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Calicreínas/sangue , Calicreínas/genética , Masculino , Pessoa de Meia-Idade , Peptídeos/sangue , Peptídeos/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Fatores de Risco , População Branca/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA