Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926589

RESUMO

Spontaneous mouse behavior is composed from repeatedly used modules of movement (e.g., rearing, running or grooming) that are flexibly placed into sequences whose content evolves over time. By identifying behavioral modules and the order in which they are expressed, researchers can gain insight into the effect of drugs, genes, context, sensory stimuli and neural activity on natural behavior. Here we present a protocol for performing Motion Sequencing (MoSeq), an ethologically inspired method that uses three-dimensional machine vision and unsupervised machine learning to decompose spontaneous mouse behavior into a series of elemental modules called 'syllables'. This protocol is based upon a MoSeq pipeline that includes modules for depth video acquisition, data preprocessing and modeling, as well as a standardized set of visualization tools. Users are provided with instructions and code for building a MoSeq imaging rig and acquiring three-dimensional video of spontaneous mouse behavior for submission to the modeling framework; the outputs of this protocol include syllable labels for each frame of the video data as well as summary plots describing how often each syllable was used and how syllables transitioned from one to the other. In addition, we provide instructions for analyzing and visualizing the outputs of keypoint-MoSeq, a recently developed variant of MoSeq that can identify behavioral motifs from keypoints identified from standard (rather than depth) video. This protocol and the accompanying pipeline significantly lower the bar for users without extensive computational ethology experience to adopt this unsupervised, data-driven approach to characterize mouse behavior.

2.
Neuron ; 111(9): 1440-1452.e5, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841241

RESUMO

Epilepsy is a major disorder affecting millions of people. Although modern electrophysiological and imaging approaches provide high-resolution access to the multi-scale brain circuit malfunctions in epilepsy, our understanding of how behavior changes with epilepsy has remained rudimentary. As a result, screening for new therapies for children and adults with devastating epilepsies still relies on the inherently subjective, semi-quantitative assessment of a handful of pre-selected behavioral signs of epilepsy in animal models. Here, we use machine learning-assisted 3D video analysis to reveal hidden behavioral phenotypes in mice with acquired and genetic epilepsies and track their alterations during post-insult epileptogenesis and in response to anti-epileptic drugs. These results show the persistent reconfiguration of behavioral fingerprints in epilepsy and indicate that they can be employed for rapid, automated anti-epileptic drug testing at scale.


Assuntos
Epilepsia , Animais , Camundongos , Modelos Animais de Doenças , Epilepsia/genética , Encéfalo
4.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233165

RESUMO

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Assuntos
Microglia/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Parvalbuminas/metabolismo , Fenótipo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Transcrição Gênica
5.
Nat Neurosci ; 23(11): 1433-1443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958923

RESUMO

Understanding how genes, drugs and neural circuits influence behavior requires the ability to effectively organize information about similarities and differences within complex behavioral datasets. Motion Sequencing (MoSeq) is an ethologically inspired behavioral analysis method that identifies modular components of three-dimensional mouse body language called 'syllables'. Here, we show that MoSeq effectively parses behavioral differences and captures similarities elicited by a panel of neuroactive and psychoactive drugs administered to a cohort of nearly 700 mice. MoSeq identifies syllables that are characteristic of individual drugs, a finding we leverage to reveal specific on- and off-target effects of both established and candidate therapeutics in a mouse model of autism spectrum disorder. These results demonstrate that MoSeq can meaningfully organize large-scale behavioral data, illustrate the power of a fundamentally modular description of behavior and suggest that behavioral syllables represent a new class of druggable target.


Assuntos
Técnicas de Observação do Comportamento/métodos , Comportamento Animal , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Reconhecimento Automatizado de Padrão/métodos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA