Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 276, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937807

RESUMO

BACKGROUND: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses. METHODS: Using structure-activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. RESULTS: Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified three compounds that reduced blood-feeding from a live host when fed to mosquitoes at a dose of 1 µM-a 100-fold improvement over the original reference compound. CONCLUSIONS: Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito-human host interactions that lead to pathogen transmission.


Assuntos
Aedes , Comportamento Alimentar , Mosquitos Vetores , Receptores de Neuropeptídeo Y , Animais , Aedes/efeitos dos fármacos , Feminino , Comportamento Alimentar/efeitos dos fármacos , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/agonistas , Mosquitos Vetores/efeitos dos fármacos , Relação Estrutura-Atividade , Humanos
2.
bioRxiv ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38464241

RESUMO

Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like Receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small molecule NPYLR7 agonists that suppress host-seeking and blood feeding when fed to mosquitoes at high micromolar doses. Using structure activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified 3 compounds that suppressed blood feeding from a live host when fed to mosquitoes at a 1 µM dose, a 100-fold improvement over the original reference compound. Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito/human host interactions that lead to pathogen transmission.

3.
Cell ; 185(22): 4099-4116.e13, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36261039

RESUMO

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.


Assuntos
Aedes , Anopheles , Repelentes de Insetos , Animais , Humanos , Ácidos Carboxílicos/farmacologia , Odorantes/análise , Repelentes de Insetos/farmacologia , Repelentes de Insetos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA