Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Brain Behav Immun ; 118: 355-363, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38485063

RESUMO

Complement is dysregulated in the brain in Alzheimer's Disease and in mouse models of Alzheimer's disease. Each of the complement derived effectors, opsonins, anaphylatoxins and membrane attack complex (MAC), have been implicated as drivers of disease but their relative contributions remain unclarified. Here we have focussed on the MAC, a lytic and pro-inflammatory effector, in the AppNL-G-F mouse amyloidopathy model. To test the role of MAC, we back-crossed to generate AppNL-G-F mice deficient in C7, an essential MAC component. C7 deficiency ablated MAC formation, reduced synapse loss and amyloid load and improved cognition compared to complement-sufficient AppNL-G-F mice at 8-10 months age. Adding back C7 caused increased MAC formation in brain and an acute loss of synapses in C7-deficient AppNL-G-F mice. To explore whether C7 was a viable therapeutic target, a C7-blocking monoclonal antibody was administered systemically for one month in AppNL-G-F mice aged 8-9 months. Treatment reduced brain MAC and amyloid deposition, increased synapse density and improved cognitive performance compared to isotype control-treated AppNL-G-F mice. The findings implicate MAC as a driver of pathology and highlight the potential for complement inhibition at the level of MAC as a therapy in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/metabolismo , Camundongos Transgênicos , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Ativação do Complemento , Modelos Animais de Doenças
2.
Clin Sci (Lond) ; 138(6): 387-412, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38505993

RESUMO

Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Inflamação , Esclerose Múltipla/tratamento farmacológico
3.
J Neuroinflammation ; 21(1): 52, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368354

RESUMO

Establishing biomarkers to predict multiple sclerosis diagnosis and prognosis has been challenging using a single biomarker approach. We hypothesised that a combination of biomarkers would increase the accuracy of prediction models to differentiate multiple sclerosis from other neurological disorders and enhance prognostication for people with multiple sclerosis. We measured 24 fluid biomarkers in the blood and cerebrospinal fluid of 77 people with multiple sclerosis and 80 people with other neurological disorders, using ELISA or Single Molecule Array assays. Primary outcomes were multiple sclerosis versus any other diagnosis, time to first relapse, and time to disability milestone (Expanded Disability Status Scale 6), adjusted for age and sex. Multivariate prediction models were calculated using the area under the curve value for diagnostic prediction, and concordance statistics (the percentage of each pair of events that are correctly ordered in time for each of the Cox regression models) for prognostic predictions. Predictions using combinations of biomarkers were considerably better than single biomarker predictions. The combination of cerebrospinal fluid [chitinase-3-like-1 + TNF-receptor-1 + CD27] and serum [osteopontin + MCP-1] had an area under the curve of 0.97 for diagnosis of multiple sclerosis, compared to the best discriminative single marker in blood (osteopontin: area under the curve 0.84) and in cerebrospinal fluid (chitinase-3-like-1 area under the curve 0.84). Prediction for time to next relapse was optimal with a combination of cerebrospinal fluid[vitamin D binding protein + Factor I + C1inhibitor] + serum[Factor B + Interleukin-4 + C1inhibitor] (concordance 0.80), and time to Expanded Disability Status Scale 6 with cerebrospinal fluid [C9 + Neurofilament-light] + serum[chitinase-3-like-1 + CCL27 + vitamin D binding protein + C1inhibitor] (concordance 0.98). A combination of fluid biomarkers has a higher accuracy to differentiate multiple sclerosis from other neurological disorders and significantly improved the prediction of the development of sustained disability in multiple sclerosis. Serum models rivalled those of cerebrospinal fluid, holding promise for a non-invasive approach. The utility of our biomarker models can only be established by robust validation in different and varied cohorts.


Assuntos
Quitinases , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/líquido cefalorraquidiano , Osteopontina , Proteína de Ligação a Vitamina D , Biomarcadores/líquido cefalorraquidiano , Recidiva
4.
Med ; 5(3): 239-253.e5, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359836

RESUMO

BACKGROUND: Long COVID encompasses a heterogeneous set of ongoing symptoms that affect many individuals after recovery from infection with SARS-CoV-2. The underlying biological mechanisms nonetheless remain obscure, precluding accurate diagnosis and effective intervention. Complement dysregulation is a hallmark of acute COVID-19 but has not been investigated as a potential determinant of long COVID. METHODS: We quantified a series of complement proteins, including markers of activation and regulation, in plasma samples from healthy convalescent individuals with a confirmed history of infection with SARS-CoV-2 and age/ethnicity/sex/infection/vaccine-matched patients with long COVID. FINDINGS: Markers of classical (C1s-C1INH complex), alternative (Ba, iC3b), and terminal pathway (C5a, TCC) activation were significantly elevated in patients with long COVID. These markers in combination had a receiver operating characteristic predictive power of 0.794. Other complement proteins and regulators were also quantitatively different between healthy convalescent individuals and patients with long COVID. Generalized linear modeling further revealed that a clinically tractable combination of just four of these markers, namely the activation fragments iC3b, TCC, Ba, and C5a, had a predictive power of 0.785. CONCLUSIONS: These findings suggest that complement biomarkers could facilitate the diagnosis of long COVID and further suggest that currently available inhibitors of complement activation could be used to treat long COVID. FUNDING: This work was funded by the National Institute for Health Research (COV-LT2-0041), the PolyBio Research Foundation, and the UK Dementia Research Institute.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Proteínas do Sistema Complemento/metabolismo , Complemento C3b
5.
Artigo em Inglês | MEDLINE | ID: mdl-37683721

RESUMO

BACKGROUND: Factor XII (FXII) is a multifunctional protease capable of activating thrombotic and inflammatory pathways. FXII has been linked to thrombosis in extracorporeal membrane oxygenation (ECMO), but the role of FXII in ECMO-induced inflammatory complications has not been studied. We used novel gene-targeted FXII- deficient rats to evaluate the role of FXII in ECMO-induced thromboinflammation. METHODS: FXII-deficient (FXII-/-) Sprague-Dawley rats were generated using CRISPR/Cas9. A minimally invasive venoarterial (VA) ECMO model was used to compare wild-type (WT) and FXII-/- rats in 2 separate experimental cohorts: rats placed on ECMO without pharmacologic anticoagulation and rats anticoagulated with argatroban. Rats were maintained on ECMO for 1 hour or until circuit failure occurred. Comparisons were made with unchallenged rats and rats that underwent a sham surgical procedure without ECMO. RESULTS: FXII-/- rats were maintained on ECMO without pharmacologic anticoagulation with low resistance throughout the 1-hour experiment. In contrast, WT rats placed on ECMO without anticoagulation developed thrombotic circuit failure within 10 minutes. Argatroban provided a means to maintain WT and FXII-/- rats on ECMO for the 1-hour time frame without thrombotic complications. Analyses of these rats demonstrated that ECMO resulted in increased neutrophil migration into the liver that was significantly blunted by FXII deficiency. ECMO also resulted in increases in high molecular weight kininogen cleavage and complement activation that were abrogated by genetic deletion of FXII. CONCLUSIONS: FXII initiates hemostatic system activation and key inflammatory sequelae in ECMO, suggesting that therapies targeting FXII could limit both thromboembolism and inopportune inflammatory complications in this setting.

6.
J Neuroinflammation ; 20(1): 169, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480051

RESUMO

BACKGROUND: Alzheimer's disease (AD) has been associated with immune dysregulation in biomarker and genome-wide association studies (GWAS). GWAS hits include the genes encoding complement regulators clusterin (CLU) and complement receptor 1 (CR1), recognised as key players in AD pathology, and complement proteins have been proposed as biomarkers. MAIN BODY: To address whether changes in plasma complement protein levels in AD relate to AD-associated complement gene variants we first measured relevant plasma complement proteins (clusterin, C1q, C1s, CR1, factor H) in a large cohort comprising early onset AD (EOAD; n = 912), late onset AD (LOAD; n = 492) and control (n = 504) donors. Clusterin and C1q were significantly increased (p < 0.001) and sCR1 and factor H reduced (p < 0.01) in AD plasma versus controls. ROC analyses were performed to assess utility of the measured complement biomarkers, alone or in combination with amyloid beta, in predicting AD. C1q was the most predictive single complement biomarker (AUC 0.655 LOAD, 0.601 EOAD); combining C1q with other complement or neurodegeneration makers through stepAIC-informed models improved predictive values slightly. Effects of GWS SNPs (rs6656401, rs6691117 in CR1; rs11136000, rs9331888 in CLU; rs3919533 in C1S) on protein concentrations were assessed by comparing protein levels in carriers of the minor vs major allele. To identify new associations between SNPs and changes in plasma protein levels, we performed a GWAS combining genotyping data in the cohort with complement protein levels as endophenotype. SNPs in CR1 (rs6656401), C1S (rs3919533) and CFH (rs6664877) reached significance and influenced plasma levels of the corresponding protein, whereas SNPs in CLU did not influence clusterin levels. CONCLUSION: Complement dysregulation is evident in AD and may contribute to pathology. AD-associated SNPs in CR1, C1S and CFH impact plasma levels of the encoded proteins, suggesting a mechanism for impact on disease risk.


Assuntos
Doença de Alzheimer , Fator H do Complemento , Humanos , Fator H do Complemento/genética , Doença de Alzheimer/genética , Clusterina/genética , Peptídeos beta-Amiloides , Complemento C1q , Estudo de Associação Genômica Ampla , Proteínas do Sistema Complemento/genética
7.
Immunobiology ; 228(3): 152393, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37187043

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Teste para COVID-19 , Pandemias/prevenção & controle , Proteínas do Sistema Complemento
8.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36809299

RESUMO

Anti-CD36 Abs have been suggested to induce transfusion-related acute lung injury (TRALI) upon blood transfusion, particularly in Asian populations. However, little is known about the pathological mechanism of anti-CD36 Ab-mediated TRALI, and potential therapies have not yet been identified. Here, we developed a murine model of anti-CD36 Ab-mediated TRALI to address these questions. Administration of mouse mAb against CD36 (mAb GZ1) or human anti-CD36 IgG, but not GZ1 F(ab')2 fragments, induced severe TRALI in Cd36+/+ male mice. Predepletion of recipient monocytes or complement, but not neutrophils or platelets, prevented the development of murine TRALI. Moreover, plasma C5a levels after TRALI induction by anti-CD36 Abs increased more than 3-fold, implying a critical role of complement C5 activation in the mechanism of Fc-dependent anti-CD36-mediated TRALI. Administration of GZ1 F(ab')2, antioxidant (N-acetyl cysteine, NAC), or C5 blocker (mAb BB5.1) before TRALI induction completely protected mice from anti-CD36-mediated TRALI. Although no significant amelioration in TRALI was observed when mice were injected with GZ1 F(ab')2 after TRALI induction, significant improvement was achieved when mice were treated postinduction with NAC or anti-C5. Importantly, anti-C5 treatment completely rescued mice from TRALI, suggesting the potential role of existing anti-C5 drugs in the treatment of patients with TRALI caused by anti-CD36.


Assuntos
Lesão Pulmonar Aguda Relacionada à Transfusão , Camundongos , Humanos , Masculino , Animais , Lesão Pulmonar Aguda Relacionada à Transfusão/patologia , Plaquetas/patologia , Monócitos/patologia , Proteínas do Sistema Complemento , Ativação do Complemento
9.
Immunology ; 168(3): 473-492, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175370

RESUMO

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.


Assuntos
COVID-19 , Humanos , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Complemento C3b , Biomarcadores , Progressão da Doença , Via Alternativa do Complemento
10.
Alzheimers Dement ; 19(4): 1383-1392, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36149090

RESUMO

INTRODUCTION: Down syndrome (DS) is associated with immune dysregulation and a high risk of early onset Alzheimer's disease (AD). Complement is a key part of innate immunity and driver of pathological inflammation, including neuroinflammation in AD. Complement dysregulation has been reported in DS; however, the pattern of dysregulation and its relationship to AD risk is unclear. METHODS: Plasma levels of 14 complement biomarkers were measured in 71 adults with DS and 46 controls to identify DS-associated dysregulation; impact of apolipoprotein E (APOE) ε4 genotype, single nucleotide polymorphisms (SNPs) in CLU and CR1, and dementia on complement biomarkers was assessed. RESULTS: Plasma levels of complement activation products (TCC, iC3b), proteins (C1q, C3, C9), and regulators (C1 inhibitor, factor H, FHR4, clusterin) were significantly elevated in DS versus controls while FI and sCR1 were significantly lower. In DS with AD (n = 13), C3 and FI were significantly decreased compared to non-AD DS (n = 58). Neither APOE genotype nor CLU SNPs impacted complement levels, while rs6656401 in CR1 significantly impacted plasma sCR1 levels. CONCLUSIONS: Complement is dysregulated in DS, likely reflecting the generalized immune dysregulation state; measurement may help identify inflammatory events in individuals with DS. Complement biomarkers differed in DS with and without AD and may aid diagnosis and/or prediction. HIGHLIGHTS: Complement is significantly dysregulated in plasma of people with DS who show changes in levels of multiple complement proteins compared to controls. People with DS and dementia show evidence of additional complement dysregulation with significantly lower levels of C3 and factor I compared to those without dementia. rs6656401 in CR1 was associated with significantly elevated sCR1 plasma levels in DS.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Doença de Alzheimer/metabolismo , Síndrome de Down/complicações , Proteínas do Sistema Complemento/genética , Apolipoproteínas E/genética , Apolipoproteína E4/genética , Biomarcadores
11.
Front Immunol ; 13: 968206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148231

RESUMO

Myasthenia Gravis (MG) is mediated by autoantibodies against acetylcholine receptors that cause loss of the receptors in the neuromuscular junction. Eculizumab, a C5-inhibitor, is the only approved treatment for MG that mechanistically addresses complement-mediated loss of nicotinic acetylcholine receptors. It is an expensive drug and was approved despite missing the primary efficacy endpoint in the Phase 3 REGAIN study. There are two observations to highlight. Firstly, further C5 inhibitors are in clinical development, but other terminal pathway proteins, such as C7, have been relatively understudied as therapeutic targets, despite the potential for lower and less frequent dosing. Secondly, given the known heterogenous mechanisms of action of autoantibodies in MG, effective patient stratification in the REGAIN trial may have provided more favorable efficacy readouts. We investigated C7 as a target and assessed the in vitro function, binding epitopes and mechanism of action of three mAbs against C7. We found the mAbs were human, cynomolgus monkey and/or rat cross-reactive and each had a distinct, novel mechanism of C7 inhibition. TPP1820 was effective in preventing experimental MG in rats in both prophylactic and therapeutic dosing regimens. To enable identification of MG patients that are likely to respond to C7 inhibition, we developed a patient stratification assay and showed in a small cohort of MG patients (n=19) that 63% had significant complement activation and C7-dependent loss of AChRs in this in vitro set up. This study provides validation of C7 as a target for treatment of MG and provides a means of identifying patients likely to respond to anti-C7 therapy based on complement-activating properties of patient autoantibodies.


Assuntos
Antineoplásicos Imunológicos , Miastenia Gravis Autoimune Experimental , Receptores Nicotínicos , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Autoanticorpos/metabolismo , Proteínas do Sistema Complemento/metabolismo , Epitopos , Humanos , Macaca fascicularis , Nicotina , Ratos , Receptores Colinérgicos
12.
Acta Neuropathol Commun ; 10(1): 99, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794654

RESUMO

Complement is involved in developmental synaptic pruning and pathological synapse loss in Alzheimer's disease. It is posited that C1 binding initiates complement activation on synapses; C3 fragments then tag them for microglial phagocytosis. However, the precise mechanisms of complement-mediated synaptic loss remain unclear, and the role of the lytic membrane attack complex (MAC) is unexplored. We here address several knowledge gaps: (i) is complement activated through to MAC at the synapse? (ii) does MAC contribute to synaptic loss? (iii) can MAC inhibition prevent synaptic loss? Novel methods were developed and optimised to quantify C1q, C3 fragments and MAC in total and regional brain homogenates and synaptoneurosomes from WT and AppNL-G-F Alzheimer's disease model mouse brains at 3, 6, 9 and 12 months of age. The impact on synapse loss of systemic treatment with a MAC blocking antibody and gene knockout of a MAC component was assessed in Alzheimer's disease model mice. A significant increase in C1q, C3 fragments and MAC was observed in AppNL-G-F mice compared to controls, increasing with age and severity. Administration of anti-C7 antibody to AppNL-G-F mice modulated synapse loss, reflected by the density of dendritic spines in the vicinity of plaques. Constitutive knockout of C6 significantly reduced synapse loss in 3xTg-AD mice. We demonstrate that complement dysregulation occurs in Alzheimer's disease mice involving the activation (C1q; C3b/iC3b) and terminal (MAC) pathways in brain areas associated with pathology. Inhibition or ablation of MAC formation reduced synapse loss in two Alzheimer's disease mouse models, demonstrating that MAC formation is a driver of synapse loss. We suggest that MAC directly damages synapses, analogous to neuromuscular junction destruction in myasthenia gravis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Animais , Ativação do Complemento , Complemento C1q/genética , Complemento C1q/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Camundongos , Placa Amiloide/patologia , Sinapses/patologia
13.
J Innate Immun ; : 1-21, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551129

RESUMO

Damage and disease of nerves activates the complement system. We demonstrated that activation of the terminal pathway of the complement system leads to the formation of the membrane attack complex (MAC) and delays regeneration in the peripheral nervous system. Animals deficient in the complement component C6 showed improved recovery after neuronal trauma. Thus, inhibitors of the MAC might be of therapeutic use in neurological disease. Here, we describe the development, structure, mode of action, and properties of a novel therapeutic monoclonal antibody, CP010, against C6 that prevents formation of the MAC in vivo. The monoclonal antibody is humanized and specific for C6 and binds to an epitope in the FIM1-2 domain of human and primate C6 with sub-nanomolar affinity. Using biophysical and structural studies, we show that the anti-C6 antibody prevents the interaction between C6 and C5/C5b by blocking the C6 FIM1-2:C5 C345c axis. Systemic administration of the anti-C6 mAb caused complete depletion of free C6 in circulation in transgenic rats expressing human C6 and thereby inhibited MAC formation. The antibody prevented disease in experimental autoimmune myasthenia gravis and ameliorated relapse in chronic relapsing experimental autoimmune encephalomyelitis in human C6 transgenic rats. CP010 is a promising complement C6 inhibitor that prevents MAC formation. Systemic administration of this C6 monoclonal antibody has therapeutic potential in the treatment of neuronal disease.

14.
Front Immunol ; 13: 842023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345676

RESUMO

The early complement components have emerged as mediators of pro-oncogenic inflammation, classically inferred to cause terminal complement activation, but there are limited data on the activity of terminal complement in cancer. We previously reported elevated serum and tissue C9, the terminal complement component, in esophageal adenocarcinoma (EAC) compared to the precursor condition Barrett's Esophagus (BE) and healthy controls. Here, we investigate the level and cellular fates of the terminal complement complex C5b-9, also known as the membrane attack complex. Punctate C5b-9 staining and diffuse C9 staining was detected in BE and EAC by multiplex immunohistofluorescence without corresponding increase of C9 mRNA transcript. Increased C9 and C5b-9 staining were observed in the sequence normal squamous epithelium, BE, low- and high-grade dysplasia, EAC. C5b-9 positive esophageal cells were morphologically intact, indicative of sublytic or complement-evasion mechanisms. To investigate this at a cellular level, we exposed non-dysplastic BE (BAR-T and CP-A), high-grade dysplastic BE (CP-B and CP-D) and EAC (FLO-1 and OE-33) cell lines to the same sublytic dose of immunopurified human C9 (3 µg/ml) in the presence of C9-depleted human serum. Cellular C5b-9 was visualized by immunofluorescence confocal microscopy. Shed C5b-9 in the form of extracellular vesicles (EV) was measured in collected conditioned medium using recently described microfluidic immunoassay with capture by a mixture of three tetraspanin antibodies (CD9/CD63/CD81) and detection by surface-enhanced Raman scattering (SERS) after EV labelling with C5b-9 or C9 antibody conjugated SERS nanotags. Following C9 exposure, all examined cell lines formed C5b-9, internalized C5b-9, and shed C5b-9+ and C9+ EVs, albeit at varying levels despite receiving the same C9 dose. In conclusion, these results confirm increased esophageal C5b-9 formation during EAC development and demonstrate capability and heterogeneity in C5b-9 formation and shedding in BE and EAC cell lines following sublytic C9 exposure. Future work may explore the molecular mechanisms and pathogenic implications of the shed C5b-9+ EV.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Vesículas Extracelulares , Ativação do Complemento , Complemento C9/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento/metabolismo , Neoplasias Esofágicas , Vesículas Extracelulares/metabolismo , Humanos
15.
Trends Pharmacol Sci ; 43(8): 615-628, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35272861

RESUMO

Evidence implicating complement in neuroinflammatory and neurodegenerative diseases (NDDs) has accumulated over the past decade, revealing complement as a driver of pathology across these diverse diseases. Over the same period, there has been an explosion of interest in the development of complement-modulating drugs, first for a few rare complement dysregulation diseases but recently also for more common diseases where complement contributes to the disease process. To date, there has been little attention paid to the potential role of anticomplement drugs in neurodegeneration and the current landscape does not feature drugs that can enter the central nervous system (CNS), a prerequisite in most NDDs. Here we summarise the evidence implicating complement in neurodegeneration, build the case for testing anticomplement drugs, and discuss how drugs may be modified or designed de novo to inhibit complement in neurodegeneration.


Assuntos
Inflamação , Doenças Neurodegenerativas , Sistema Nervoso Central/patologia , Proteínas do Sistema Complemento , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
16.
J Infect Dis ; 225(10): 1861-1864, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-34971376

RESUMO

A safe and effective vaccine against multidrug-resistant gonorrhea is urgently needed. An experimental peptide vaccine called TMCP2 that mimics an oligosaccharide epitope in gonococcal lipooligosaccharide, when adjuvanted with glucopyranosyl lipid adjuvant-stable emulsion, elicits bactericidal immunoglobulin G and hastens clearance of gonococci in the mouse vaginal colonization model. In this study, we show that efficacy of TMCP2 requires an intact terminal complement pathway, evidenced by loss of activity in C9-/- mice or when C7 function was blocked. In conclusion, TMCP2 vaccine efficacy in the mouse vagina requires membrane attack complex. Serum bactericidal activity may serve as a correlate of protection for TMCP2.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Vacinas Bacterianas , Proteínas do Sistema Complemento , Modelos Animais de Doenças , Feminino , Gonorreia/prevenção & controle , Lipopolissacarídeos , Camundongos
17.
Immunology ; 165(2): 250-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775604

RESUMO

Accurate assessment of SARS-CoV-2 immunity is critical in evaluating vaccine efficacy and devising public health policies. Whilst the exact nature of effective immunity remains incompletely defined, SARS-CoV-2-specific T-cell responses are a critical feature that will likely form a key correlate of protection against COVID-19. Here, we developed and optimized a high-throughput whole blood-based assay to determine the T-cell response associated with prior SARS-CoV-2 infection and/or vaccination amongst 231 healthy donors and 68 cancer patients. Following overnight in vitro stimulation with SARS-CoV-2-specific peptides, blood plasma samples were analysed for TH 1-type cytokines. Highly significant differential IFN-γ+ /IL-2+ SARS-CoV-2-specific T-cell responses were seen amongst previously infected COVID-19-positive healthy donors in comparison with unknown / naïve individuals (p < 0·0001). IFN-γ production was more effective at identifying asymptomatic donors, demonstrating higher sensitivity (96·0% vs. 83·3%) but lower specificity (84·4% vs. 92·5%) than measurement of IL-2. A single COVID-19 vaccine dose induced IFN-γ and/or IL-2 SARS-CoV-2-specific T-cell responses in 116 of 128 (90·6%) healthy donors, reducing significantly to 27 of 56 (48·2%) when measured in cancer patients (p < 0·0001). A second dose was sufficient to boost T-cell responses in the majority (90·6%) of cancer patients, albeit IFN-γ+ responses were still significantly lower overall than those induced in healthy donors (p = 0·034). Three-month post-vaccination T-cell responses also declined at a faster rate in cancer patients. Overall, this cost-effective standardizable test ensures accurate and comparable assessments of SARS-CoV-2-specific T-cell responses amenable to widespread population immunity testing, and identifies individuals at greater need of booster vaccinations.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Portador Sadio/imunologia , Imunidade Celular , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , Células Th1/imunologia , Vacinação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/prevenção & controle , Feminino , Humanos , Interferon gama/imunologia , Masculino , Pessoa de Meia-Idade
18.
Bio Protoc ; 11(19): e4175, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34722822

RESUMO

The complement system is a central component of innate immunity, responsible for recognition and killing of bacteria by tagging invaders through opsonisation, thereby promoting phagocytosis, and by direct lysis. Complement activity is routinely measured using functional assays that utilise erythrocytes as targets. The classical pathway haemolytic assay (CH50) with antibody sensitised sheep erythrocytes as target is used worldwide in clinical and research laboratories to measure complement activity in human and rodent sera. While there are no particular limitations in the human assay, measuring complement in mouse serum is more difficult and usually requires large amounts of serum, which is challenging to collect in experiments. In particular, it is challenging to measure the activities of individual mouse complement proteins. To overcome this hurdle, we have developed protocols that employ human sera depleted of single complement proteins as the source of the other complement proteins and test mouse serum to restore the relevant component. This simple haemolytic assay is a useful tool for confirming natural or engineered complement deficiencies and complement dysregulation in mouse models.

19.
iScience ; 24(11): 103215, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34632327

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a life-threatening disease occurring several weeks after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Deep immune profiling showed acute MIS-C patients had highly activated neutrophils, classical monocytes and memory CD8+ T-cells, with increased frequencies of B-cell plasmablasts and double-negative B-cells. Post treatment samples from the same patients, taken during symptom resolution, identified recovery-associated immune features including increased monocyte CD163 levels, emergence of a new population of immature neutrophils and, in some patients, transiently increased plasma arginase. Plasma profiling identified multiple features shared by MIS-C, Kawasaki Disease and COVID-19 and that therapeutic inhibition of IL-6 may be preferable to IL-1 or TNF-α. We identified several potential mechanisms of action for IVIG, the most commonly used drug to treat MIS-C. Finally, we showed systemic complement activation with high plasma C5b-9 levels is common in MIS-C suggesting complement inhibitors could be used to treat the disease.

20.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201241

RESUMO

The current endoscopy and biopsy diagnosis of esophageal adenocarcinoma (EAC) and its premalignant condition Barrett's esophagus (BE) is not cost-effective. To enable EAC screening and patient triaging for endoscopy, we developed a microfluidic lectin immunoassay, the EndoScreen Chip, which allows sensitive multiplex serum biomarker measurements. Here, we report the proof-of-concept deployment for the EAC biomarker Jacalin lectin binding complement C9 (JAC-C9), which we previously discovered and validated by mass spectrometry. A monoclonal C9 antibody (m26 3C9) was generated and validated in microplate ELISA, and then deployed for JAC-C9 measurement on EndoScreen Chip. Cohort evaluation (n = 46) confirmed the expected elevation of serum JAC-C9 in EAC, along with elevated total serum C9 level. Next, we asked if the small panel of serum biomarkers improves detection of EAC in this cohort when used in conjunction with patient risk factors (age, body mass index and heartburn history). Using logistic regression modeling, we found that serum C9 and JAC-C9 significantly improved EAC prediction from AUROC of 0.838 to 0.931, with JAC-C9 strongly predictive of EAC (vs. BE OR = 4.6, 95% CI: 1.6-15.6, p = 0.014; vs. Healthy OR = 4.1, 95% CI: 1.2-13.7, p = 0.024). This proof-of-concept study confirms the microfluidic EndoScreen Chip technology and supports the potential utility of blood biomarkers in improving triaging for diagnostic endoscopy. Future work will expand the number of markers on EndoScreen Chip from our list of validated EAC biomarkers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA