Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(16): 7482-7492, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017125

RESUMO

Ligand-free methods for the synthesis of halide perovskite nanocrystals are of great interest because of their excellent performance in optoelectronics and photonics. In addition, template-assisted synthesis methods have become a powerful tool for the fabrication of environmentally stable and bright nanocrystals. Here we develop a novel approach for the facile ligand-free template-assisted fabrication of perovskite nanocrystals with a near-unity absolute quantum yield, which involves CaCO3 vaterite micro- and submicrospheres as templates. We show that the optical properties of the obtained nanocrystals are affected not mainly by the template morphology, but strongly depend on the concentration of precursor solutions, anion and cation ratio, as well as on adding defect-passivating rare-earth dopants. The optimized samples are further tested as infrared radiation visualizers exhibiting promising characteristics comparable to those that are commercially available.

2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233178

RESUMO

The co-crystallization of the lead(II) complex [Pb(S2CNEt2)2] with tetraiodoethylene (C2I4) gave the co-crystal, [Pb(S2CNEt2)2]∙½C2I4, whose X-ray structure exhibits only a small change of the crystal parameters than those in the parent [Pb(S2CNEt2)2]. The supramolecular organization of the co-crystal is largely determined by an interplay between Pb⋯S tetrel bonding (TeB) and I⋯S halogen bonding (HaB) with comparable contributions from these non-covalent contacts; the TeBs observed in the parent complex, [Pb(S2CNEt2)2], remain unchanged in the co-crystal. An analysis of the theoretical calculation data, performed for the crystal and cluster models of [Pb(S2CNEt2)2]∙½C2I4, revealed the non-covalent nature of the Pb⋯S TeB (-5.41 and -7.78 kcal/mol) and I⋯S HaB (-7.26 and -11.37 kcal/mol) interactions and indicate that in the co-crystal these non-covalent forces are similar in energy.


Assuntos
Ditiocarb , Halogênios , Halogênios/química , Hidrocarbonetos Iodados , Chumbo , Modelos Moleculares
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142870

RESUMO

An antimicrobial polyacrylic silver salt (freshly prepared, stored for one year and model-aged) was studied by physical-chemical techniques for nanoparticle detection. In all cases, this salt represents a composite of radical-enriched macromolecules and silver(0) nanoparticles. As time passed, the initial small spherical nanoparticles were converted into larger non-spherical silver nanoparticles. The initial highly water-soluble antimicrobial solid nanocomposite almost loses its solubility in water and cannot be used as an antimicrobial agent. Unlike insoluble solid silver polyacrylate, its freshly prepared aqueous solution retains a liquid-phase consistency after one year as well as pronounced antimicrobial properties. The mechanism of these spontaneous and model-simulated processes was proposed. These results have attracted attention for officinal biomedicinal silver salts as complex radical-enriched nanocomposite substances; they also indicate contrasting effects of silver polymeric salt storing in solid and solution forms that dramatically influence antimicrobial activity.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas/química , Nanocompostos/química , Polímeros , Sais/farmacologia , Prata/química , Água/química
4.
ACS Appl Mater Interfaces ; 14(27): 31000-31009, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35758694

RESUMO

Inorganic-organic hybrid luminescent materials have received great attention for their potential applications in a wide range of clean/renewable energy-related areas, including photovoltaics and solid-state lighting. Herein, we present a unique and general "Mn + Cu" approach by blending two earth-abundant luminogenic metals, manganese and copper, within a single ionic structure to construct a remarkable family of low-cost and multifunctional hybrid materials featuring dual emission, as well as triboluminescence and second-harmonic generation response. The novel hybrid materials are made of diphosphine dioxide-chelated [Mn(O∧O)3]2+ cations and various anionic [CuxIy](y-x)- clusters, ensuring manifestation of dual phosphorescence streamed from octahedral Mn2+ ions (605-648 nm) and iodocuprate anions (480-728 nm). Noteworthily, the relative ratio of the emission bands, and hence a resulting emission chromaticity, can be tuned in a wide range through modification of cluster [CuxIy](y-x)- modules. The structural diversity, enhanced robustness, and up to 100% luminescence quantum yield make the designed materials promising phosphors for lighting and sensing applications.

5.
J Phys Chem Lett ; 12(37): 8991-8998, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34514804

RESUMO

Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr3 nanocrystals (NCs) that show an improved water-resistance (at least for 24 h) after their coating as individual particles with various silica-based shells. The obtained phTEOS-TMOS@CsPbBr3 NCs possess high quality, which we confirm with high-resolution transmission and scanning transmission electron microscopy, X-ray diffraction analysis, Fourier-transform infrared and energy-dispersive X-ray spectroscopies, as well as with fluorescence optical microscopy. The developed platform can make the halide perovskite NCs suitable for various bioimaging applications.


Assuntos
Compostos de Cálcio/química , Nanopartículas/química , Óxidos/química , Titânio/química , Água/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lasers , Camundongos , Microscopia Confocal , Nanopartículas/toxicidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA