Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Wearable Technol ; 4: e20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487775

RESUMO

Back overuse injuries are a significant problem in the U.S. Army, responsible for nearly a quarter of musculoskeletal injuries. Back exosuits are wearable devices that relieve musculoskeletal strain, make lifting easier, and could potentially reduce Soldier overuse injuries. But published studies have not evaluated exosuits during realistic field operations to assess acceptability to Soldiers. We tested a back exosuit on field artillery Soldiers during a field training exercise. Afterward, Soldiers completed a survey to quantify their satisfaction, intent to use, and performance impact of the exosuit. Feedback was overwhelmingly positive: Approximately 90% of Soldiers reported that exosuits increased their ability to perform their duties, and 100% said that if the exosuit were further developed and made available to them, they would be likely to wear it. These numerical survey results indicated that exosuits can provide a practical and acceptable way to assist lifting and augment physical performance during realistic Army operations without interfering with other duties.

2.
J Biomech ; 145: 111387, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442432

RESUMO

Pressure sensing insoles enable us to estimate forces under the feet during activities such as running, which can provide valuable insight into human movement. Pressure insoles also afford the opportunity to collect more data in more representative environments than can be achieved in laboratory studies. One key challenge with real-world use of pressure insoles is limited battery life which restricts the amount of data that can be collected on a single charge. Reducing sampling frequency is one way to prolong battery life, at the cost of decreased measurement accuracy, but this trade-off has not been quantified, which hinders decision-making by researchers and developers. Therefore, we characterized the effect of decreasing sampling frequency on peak force estimates from pressure insoles (Novel Pedar, 100 Hz) across a range of running speeds and slopes. Data were downsampled to 50, 33, 25, 20, 16 and 10 Hz. Force peaks were extracted due to their importance in biomechanical algorithms trained to estimate musculoskeletal forces and were compared with the reference sampling frequency of 100 Hz to compute relative errors. Peak force errors increased exponentially from 0.7% (50 Hz) to 9% (10 Hz). However, peak force errors were < 3% for all sampling frequencies down to 20 Hz. For some pressure insoles, sampling rate is inversely proportional to battery life. Therefore, these findings suggest that battery life could be increased up to 5x at the expense of 3% errors. These results are encouraging for researchers aiming to deploy pressure insoles for remote monitoring or in longitudinal studies.


Assuntos
Corrida , Humanos
3.
J Sports Sci ; 40(15): 1741-1749, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35938189

RESUMO

Tibial bone stress injury is a common overuse injury experienced by runners, which results from repetitive tissue forces. Wearable sensor systems (wearables) that monitor tibial forces could help understand and reduce injury incidence. However, there are currently no validated wearables that monitor tibial bone forces. Previous work using simulated wearables demonstrated accurate tibial force estimates by combining a shoe-worn inertial measurement unit (IMU) and pressure insole with a trained algorithm. This study aimed assessed how accurately tibial bone forces could be estimated with existing wearables. Nine recreational runners ran at a series of different speeds and slopes, and with various stride patterns. Shoe-worn IMU and insole data were input into a trained algorithm to estimate peak tibial force. We found an average error of 5.7% in peak tibial force estimates compared with lab-based estimates calculated using motion capture and a force instrumented treadmill. Insole calibration procedures were essential to achieving accurate tibial force estimates. We concluded that a shoe-worn, multi-sensor system is a promising approach to monitoring tibial bone forces in running. This study adds to the literature demonstrating the potential of wearables to monitor musculoskeletal forces, which could positively impact injury prevention, and scientific understanding.


Assuntos
Corrida , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Humanos , Sapatos , Tíbia
4.
J Neurophysiol ; 122(2): 872-887, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291150

RESUMO

Organization of spinal motor output has become of interest for investigating differential activation of lumbar and sacral motor pools during locomotor tasks. Motor pools are associated with functional grouping of motoneurons of the lower limb muscles. Here we examined how the spatiotemporal organization of lumbar and sacral motor pool activity during walking is orchestrated with slope of terrain and speed of progression. Ten subjects walked on an instrumented treadmill at different slopes and imposed speeds. Kinetics, kinematics, and electromyography of 16 lower limb muscles were recorded. The spinal locomotor output was assessed by decomposing the coordinated muscle activation profiles into a small set of common factors and by mapping them onto the rostrocaudal location of the motoneuron pools. Our results show that lumbar and sacral motor pool activity depend on slope and speed. Compared with level walking, sacral motor pools decrease their activity at negative slopes and increase at positive slopes, whereas lumbar motor pools increase their engagement when both positive and negative slope increase. These findings are consistent with a differential involvement of the lumbar and the sacral motor pools in relation to changes in positive and negative center of body mass mechanical power production due to slope and speed.NEW & NOTEWORTHY In this study, the spatiotemporal maps of motoneuron activity in the spinal cord were assessed during walking at different slopes and speeds. We found differential involvement of lumbar and sacral motor pools in relation to changes in positive and negative center of body mass power production due to slope and speed. The results are consistent with recent findings about the specialization of neuronal networks located at different segments of the spinal cord for performing specific locomotor tasks.


Assuntos
Locomoção/fisiologia , Extremidade Inferior/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Vértebras Lombares , Masculino , Sacro , Adulto Jovem
5.
J Appl Physiol (1985) ; 125(2): 642-653, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29698109

RESUMO

During walking, the elevation angles of the thigh, shank, and foot (i.e., the angle between the segment and the vertical) covary along a characteristic loop constrained on a plane. Here, we investigate how the shape of the loop and the orientation of the plane, which reflect the intersegmental coordination, change with the slope of the terrain and the speed of progression. Ten subjects walked on an inclined treadmill at different slopes (between -9° and +9°) and speeds (from 0.56 to 2.22 m/s). A principal component analysis was performed on the covariance matrix of the thigh, shank, and foot elevation angles. At each slope and speed, the variance accounted for by the two principal components was >99%, indicating that the planar covariation is maintained. The two principal components can be associated to the limb orientation (PC1*) and the limb length (PC2*). At low walking speeds, changes in the intersegmental coordination across slopes are characterized mainly by a change in the orientation of the covariation plane and in PC2* and to a lesser extent, by a change in PC1*. As speed increases, changes in the intersegmental coordination across slopes are more related to a change in PC1 *, with limited changes in the orientation of the plane and in PC 2*. Our results show that the kinematic patterns highly depend on both slope and speed. NEW & NOTEWORTHY In this paper, changes in the lower-limb intersegmental coordination during walking with slope and speed are linked to changes in the trajectory of the body center of mass. Modifications in the kinematic pattern with slope depend on speed: at slow speeds, the net vertical displacement of the body during each step is related to changes in limb length and orientation. When speed increases, the vertical displacement is mostly related to a change in limb orientation.


Assuntos
Fenômenos Biomecânicos/fisiologia , Velocidade de Caminhada/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Humanos , Extremidade Inferior/fisiologia , Masculino , Orientação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA