Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 19(1): 79-91, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19943894

RESUMO

Agricultural and wild ecosystems may interact through shared pathogens such as Macrophomina phaseolina, a generalist clonal fungus with more than 284 plant hosts that is likely to become more important under climate change scenarios of increased heat and drought stress. To evaluate the degree of subdivision in populations of M. phaseolina in Kansas agriculture and wildlands, we compared 143 isolates from maize fields adjacent to tallgrass prairie, nearby sorghum fields, widely dispersed soybean fields and isolates from eight plant species in tallgrass prairie. Isolate growth phenotypes were evaluated on a medium containing chlorate. Genetic characteristics were analysed based on amplified fragment length polymorphisms and the sequence of the rDNA-internal transcribed spacer (ITS) region. The average genetic similarity was 58% among isolates in the tallgrass prairie, 71% in the maize fields, 75% in the sorghum fields and 80% in the dispersed soybean fields. The isolates were divided into four clusters: one containing most of the isolates from maize and soybean, two others containing isolates from wild plants and sorghum, and a fourth containing a single isolate recovered from Solidago canadensis in the tallgrass prairie. Most of the sorghum isolates had the dense phenotype on media containing chlorate, while those from other hosts had either feathery or restricted phenotypes. These results suggest that the tallgrass prairie supports a more diverse population of M. phaseolina per area than do any of the crop species. Subpopulations show incomplete specialization by host. These results also suggest that inoculum produced in agriculture may influence tallgrass prairie communities, and conversely that different pathogen subpopulations in tallgrass prairie can interact there to generate 'hybrids' with novel genetic profiles and pathogenic capabilities.


Assuntos
Ascomicetos/genética , Genética Populacional , Glycine max/microbiologia , Sorghum/microbiologia , Zea mays/microbiologia , Agricultura , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Ascomicetos/classificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Ecossistema , Variação Genética , Haplótipos , Kansas , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Análise de Componente Principal
2.
Plant Dis ; 90(7): 971, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30781042

RESUMO

The Asian soybean rust fungus, Phakopsora pachyrhizi H. Sydow & Sydow, was found on a 0.4-ha patch of kudzu (Pueraria lobata) near Dayton (Liberty County) in East Texas on November 2, 2005. Nearly 100% of the 300 leaflets examined were diseased with severity ranging from 5 to >100 lesions per leaflet. Eleven soybean fields as much as 20 km away were scouted and no infected plants were found. Asian soybean rust was also found on a 0.4-ha field of soybean (Glycine max cv. Vernal) on February 14, 2006 at the Texas A&M Agricultural Experiment Station in Weslaco (Hidalgo County) in the Lower Rio Grande Valley (LRGV) of Texas. Disease incidence was 100% (severity ranging from 5 to >100 lesions per leaflet) on 50 younger plants with green leaves along the edges of the field, whereas most of the plants in this field had senesced. These plants were not symptomatic and were at the R6 stage (full seed) when this field was previously scouted on December 19, 2005. Lesions on leaflets of kudzu and soybean were small and angular with erumpent uredinia typical of P. pachyrhizi. Urediniospores were ovoid or globose, hyaline, and measured 25 to 30 × 14 to 21 µm. Leaf samples with pustules were positive for P. pachyrhizi using enzyme-linked immunosorbent assay (ELISA) (Envirologix, Portland, ME). Morphological and polymerase chain reaction (PCR) identification of P. pachyrhizi from kudzu and soybean samples were confirmed by the USDA-APHIS-PPQ NIS and CPHST laboratories in Beltsville, MD as previously described (2). The kudzu in East Texas is not likely to support overwintering of the pathogen because it usually dies back during the winter. Leaves at this site were dead by January 17, 2006. This is the southernmost infestation of kudzu in Texas known to us. In contrast, the LRGV has a subtropical climate that would favor year-round survival of the fungus (3). This area, where 120 to 160 ha of soybeans are grown, may be a source of inoculum for soybean rust epidemics in the Midwest. Spore movement would follow the same pattern as seen with cereal rusts (1). However, soybeans are typically absent from the LRGV between late December and early March, so survival of the fungus during this interval would require other hosts. Regardless of whether the fungus overwinters here, or moves in from elsewhere, the LRGV spring crop could serve as an early indicator of a potential rust epidemic. References: (1) M. G. Eversmeyer and C. L. Kramer. Annu. Rev. Phytopathol. 38:491, 2000. (2) J. M. Mullen et al. Plant Dis. 90:112, 2006. (3) S. Pivonia et al. Plant Dis. 89:678, 2005.

3.
Plant Dis ; 90(6): 834, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30781272

RESUMO

Phakopsora pachyrhizi, the causal organism of soybean rust, was first observed in the continental United States on 6 November 2004 (2). On 11 November 2005, as part a national soybean rust monitoring effort, 75 leaves of kudzu (Pueraria montana var. lobata) were arbitrarily collected from a patch growing in Princeton, Caldwell County, Kentucky (37.106650°N, 87.886120°W) that had been periodically scouted for the presence of the disease since May 2005. Upon microscopic examination of the nonincubated sample, a small (˜2.0 cm2) area of one leaf exhibited lesions, uredinia, and urediniospores characteristic of those reported for P. pachyrhizi (the Asian species) and P. meibomiae (the New World species) (2). No other infected leaves were observed despite repeated visits to the site and collection and observation of nearly 200 leaves. On 16 November 2005, one-half of the symptomatic tissue was sent by overnight courier to the USDA/APHIS/PPQ/NIS Laboratory, Beltsville, MD and the other half was sent to the Southern Plant Diagnostic Network Laboratory (SPDN), University of Florida, Gainesville. Both laboratories confirmed that the rust was a Phakopsora spp. on the basis of morphological examination. The preliminary polymerase chain reaction (PCR) testing conducted by the SPDN according to Harmon et al. (1) indicated the presence of P. pachyrhizi that was confirmed by the USDA/NPGBL using the validated modified real-time PCR assay described previously (2). The field diagnosis of P. pachyrhizi and preliminary PCR results were officially confirmed by USDA/APHIS on 18 November 2005. To our knowledge, this is the first report of P. pachyrhizi on kudzu or any host in Kentucky, and currently, the northernmost report of soybean rust on any host in the continental United States. References: (1) P. F. Harmon et al. On-line publication, doi:10.1094/PHP-2005-0613-O1-RS. Plant Health Progress, 2005. (2) R. W. Schneider et al. Plant Dis. 89:774, 2005.

4.
Genetics ; 160(4): 1451-60, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11973300

RESUMO

We constructed a genetic linkage map of Gibberella zeae (Fusarium graminearum) by crossing complementary nitrate-nonutilizing (nit) mutants of G. zeae strains R-5470 (from Japan) and Z-3639 (from Kansas). We selected 99 nitrate-utilizing (recombinant) progeny and analyzed them for amplified fragment length polymorphisms (AFLPs). We used 34 pairs of two-base selective AFLP primers and identified 1048 polymorphic markers that mapped to 468 unique loci on nine linkage groups. The total map length is approximately 1300 cM with an average interval of 2.8 map units between loci. Three of the nine linkage groups contain regions in which there are high levels of segregation distortion. Selection for the nitrate-utilizing recombinant progeny can explain two of the three skewed regions. Two linkage groups have recombination patterns that are consistent with the presence of intercalary inversions. Loci governing trichothecene toxin amount and type (deoxynivalenol or nivalenol) map on linkage groups IV and I, respectively. The locus governing the type of trichothecene produced (nivalenol or deoxynivalenol) cosegregated with the TRI5 gene (which encodes trichodiene synthase) and probably maps in the trichothecene gene cluster. This linkage map will be useful in population genetic studies, in map-based cloning, for QTL (quantitative trait loci) analysis, for ordering genomic libraries, and for genomic comparisons of related species.


Assuntos
Mapeamento Cromossômico , Fusarium/genética , Gibberella/genética , Cromossomos Fúngicos , Marcadores Genéticos , Haplótipos , Reação em Cadeia da Polimerase
5.
Appl Environ Microbiol ; 66(10): 4378-82, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11010886

RESUMO

All sexually fertile strains in the Gibberella fujikuroi species complex are heterothallic, with individual mating types conferred by the broadly conserved ascomycete idiomorphs MAT-1 and MAT-2. We sequenced both alleles from all eight mating populations, developed a multiplex PCR technique to distinguish these idiomorphs, and tested it with representative strains from all eight biological species and 22 additional species or phylogenetic lineages from this species complex. In most cases, either an approximately 800-bp fragment from MAT-2 or an approximately 200-bp fragment from MAT-1 is amplified. The amplified fragments cosegregate with mating type, as defined by sexual cross-fertility, in a cross of Fusarium moniliforme (Fusarium verticillioides). Neither of the primer pairs amplify fragments from Fusarium species such as Fusarium graminearum, Fusarium pseudograminearum, and Fusarium culmorum, which have, or are expected to have, Gibberella sexual stages but are thought to be relatively distant from the species in the G. fujikuroi species complex. Our results suggest that MAT allele sequences are useful indicators of phylogenetic relatedness in these and other Fusarium species.


Assuntos
Gibberella/genética , Proteínas de Grupo de Alta Mobilidade/genética , Alelos , Cruzamentos Genéticos , Fusarium/classificação , Fusarium/genética , Gibberella/classificação , Proteínas de Grupo de Alta Mobilidade/química , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA