Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mater Horiz ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953878

RESUMO

Affective computing, representing the forefront of human-machine interaction, is confronted with the pressing challenges of the execution speed and power consumption brought by the transmission of massive data. Herein, we introduce a bionic organic memristor inspired by the ligand-gated ion channels (LGICs) to facilitate near-sensor affective computing based on electroencephalography (EEG). It is constructed from a coordination polymer comprising Co ions and benzothiadiazole (Co-BTA), featuring multiple switching sites for redox reactions. Through advanced characterizations and theoretical calculations, we demonstrate that when subjected to a bias voltage, only the site where Co ions bind with N atoms from four BTA molecules becomes activated, while others remain inert. This remarkable phenomenon resembles the selective in situ activation of LGICs on the postsynaptic membrane for neural signal regulation. Consequently, the bionic organic memristor network exhibits outstanding reliability (200 000 cycles), exceptional integration level (210 pixels), ultra-low energy consumption (4.05 pJ), and fast switching speed (94 ns). Moreover, the built near-sensor system based on it achieves emotion recognition with an accuracy exceeding 95%. This research substantively adds to the ambition of realizing empathetic interaction and presents an appealing bionic approach for the development of novel electronic devices.

2.
J Psychiatr Res ; 176: 293-303, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38905762

RESUMO

Major Depressive Disorder (MDD) is frequently associated with social dysfunction and impaired decision-making, but its impact on social decisions remains unclear. Thus, we conducted a series of meta-analyses to examine the effects of MDD on key social decision phenomena, including trust, altruistic punishment, and cooperation. We searched Web of Science, PubMed, PsycINFO, and Embase up to December 2023, using Hedges' g to compare social decision-making between MDD patients and healthy controls (HCs). Meta-analytic results showed that MDD patients exhibited a significant reduction in trust (Hedges' g = -0.347, p < 0.001), no significant difference in altruistic punishment (Hedges' g = 0.232, p = 0.149), and an increase in cooperative behaviors (Hedges' g = 0.361, p = 0.002) compared to HCs. The moderation analysis revealed that age (p = 0.039) and region (p = 0.007) significantly moderated altruistic punishment, with older MDD patients and those from Asian and European regions having larger MDD-HC contrast than others. Regarding cooperation, moderation analysis indicated that age (p = 0.028), years of education (p = 0.054), and treatment coverage (p = 0.042) were significant moderators, indicating larger MDD-HC contrast in older, less-educated and better-treated people. These findings suggest MDD has different impacts on different social decisions, highlighting the need for fine-tuned therapeutic interventions that address these differences. The data also underscores the importance of considering demographic and treatment-related variables in managing MDD, which could inform personalized treatment strategies and improve social functionality and patient outcomes.

3.
Behav Brain Res ; 469: 115050, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38761858

RESUMO

The endowment effect is a tendency that individuals overvalue items belonging to them relative to those items that do not. Previous studies showed a strong relation between the dopamine beta-hydroxylase (DBH) gene and the endowment effect (EE), and a link between EE and task-based functional MRI activation in multiple brain regions. However, the role of brain structure on EE remains unclear. In this study, we have explored whether regional brain volume mediate the effect of the DBH gene on EE. Results showed that rs1611115, single-nucleotide polymorphisms (SNPs) at DBH loci, were significantly associated with right thalamus volume and the endowment effect in males but not in female participants. Specifically, male DBH rs1611115 T-carriers had larger right thalamus volume compared to carriers of CC genotype and exhibited a greater endowment effect. Importantly, we found that right thalamus volume mediated the effect of rs1611115 on the endowment effect in male participants. This study demonstrated how thalamic volume plays an important mediating role between genetics and decision-making in humans.


Assuntos
Dopamina beta-Hidroxilase , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único , Tálamo , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Dopamina beta-Hidroxilase/genética , Lateralidade Funcional/fisiologia , Genótipo , Caracteres Sexuais , Tálamo/diagnóstico por imagem
4.
ACS Appl Mater Interfaces ; 16(17): 22303-22311, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626428

RESUMO

The advancement of artificial intelligent vision systems heavily relies on the development of fast and accurate optical imaging detection, identification, and tracking. Framed by restricted response speeds and low computational efficiency, traditional optoelectronic information devices are facing challenges in real-time optical imaging tasks and their ability to efficiently process complex visual data. To address the limitations of current optoelectronic information devices, this study introduces a novel photomemristor utilizing halide perovskite thin films. The fabrication process involves adjusting the iodide proportion to enhance the quality of the halide perovskite films and minimize the dark current. The photomemristor exhibits a high external quantum efficiency of over 85%, which leads to a low energy consumption of 0.6 nJ. The spike timing-dependent plasticity characteristics of the device are leveraged to construct a spiking neural network and achieve a 99.1% accuracy rate of directional perception for moving objects. The notable results offer a promising hardware solution for efficient optoneuromorphic and edge computing applications.

5.
Front Plant Sci ; 15: 1329697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501140

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system has been widely applied in cultivated crops, but limited in their wild relatives. Nicotiana alata is a typical wild species of genus Nicotiana that is globally distributed as a horticultural plant and well-studied as a self-incompatibility model. It also has valuable genes for disease resistance and ornamental traits. However, it lacks an efficient genetic transformation and genome editing system, which hampers its gene function and breeding research. In this study, we developed an optimized hypocotyl-mediated transformation method for CRISPR-Cas9 delivery. The genetic transformation efficiency was significantly improved from approximately 1% to over 80%. We also applied the CRISPR-Cas9 system to target the phytoene desaturase (NalaPDS) gene in N. alata and obtained edited plants with PDS mutations with over 50% editing efficiency. To generate self-compatible N. alata lines, a polycistronic tRNA-gRNA (PTG) strategy was used to target exonic regions of allelic S-RNase genes and generate targeted knockouts simultaneously. We demonstrated that our system is feasible, stable, and high-efficiency for N. alata genome editing. Our study provides a powerful tool for basic research and genetic improvement of N. alata and an example for other wild tobacco species.

6.
Adv Sci (Weinh) ; 11(21): e2401080, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520711

RESUMO

Entering the era of AI 2.0, bio-inspired target recognition facilitates life. However, target recognition may suffer from some risks when the target is hijacked. Therefore, it is significantly important to provide an encryption process prior to neuromorphic computing. In this work, enlightened from time-varied synaptic rule, an in-memory asymmetric encryption as pre-authentication is utilized with subsequent convolutional neural network (ConvNet) for target recognition, achieving in-memory two-factor authentication (IM-2FA). The unipolar self-oscillated synaptic behavior is adopted to function as in-memory asymmetric encryption, which can greatly decrease the complexity of the peripheral circuit compared to bipolar stimulation. Results show that without passing the encryption process with suitable weights at the correct time, the ConvNet for target recognition will not work properly with an extremely low accuracy lower than 0.86%, thus effectively blocking out the potential risks of involuntary access. When a set of correct weights is evolved at a suitable time, a recognition rate as high as 99.82% can be implemented for target recognition, which verifies the effectiveness of the IM-2FA strategy.


Assuntos
Redes Neurais de Computação , Sinapses , Sinapses/fisiologia , Algoritmos , Humanos
7.
Plant Genome ; 17(1): e20409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37961811

RESUMO

Mitochondrial genomes (mitogenomes) of flowering plants vary greatly in structure and size, which can lead to frequent gene mutation, rearrangement, or recombination, then result in the cytoplasmic male sterile (CMS) mutants. In tobacco (Nicotiana tabacum), suaCMS lines are widely used in heterosis breeding; however, the related genetic regulations are not very clear. In this study, the cytological observation indicated that the pollen abortion of tobacco suaCMS(HD) occurred at the very early stage of the stamen primordia differentiation. In this study, the complete mitochondrial genomes of suaCMS(HD) and its maintainer HD were sequenced using the PacBio and Illumina Hiseq technology. The total length of the assembled mitogenomes of suaCMS(HD) and HD was 494,317 bp and 430,694 bp, respectively. Comparative analysis indicated that the expanded 64 K bases in suaCMS(HD) were mainly located in noncoding regions, and 23 and 21 big syntenic blocks (>5000 bp) were found in suaCMS(HD) and HD with a series of repeats. Electron transport chain-related genes were highly conserved in two mitogenomes, except five genes (ATP4, ATP6, COX2, CcmFC, and SDH3) with substantial substitutions. Three suaCMS(HD)-specific genes, orf261, orf291, and orf433, were screened. Sequence analysis and RT-PCR verification showed that they were unique to suaCMS(HD). Further gene location analysis and protein property prediction indicated that all the three genes were likely candidates for suaCMS(HD). This study provides new insight into understanding the suaCMS mechanism and is useful for improving tobacco breeding.


Assuntos
Genoma Mitocondrial , Nicotiana , Nicotiana/genética , Melhoramento Vegetal , Citoplasma , Sequência de Bases
8.
Nano Lett ; 23(23): 10821-10831, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38050812

RESUMO

Anisotropic optoelectronics based on low-symmetry two-dimensional (2D) materials hold immense potential for enabling multidimensional visual perception with improved miniaturization and integration capabilities, which has attracted extensive interest in optical communication, high-gain photoswitching circuits, and polarization imaging fields. However, the reported in-plane anisotropic photocurrent and polarized dichroic ratios are limited, hindering the achievement of high-performance anisotropic optoelectronics. In this study, we introduce novel low-symmetry violet phosphorus (VP) with a unique tubular cross-linked structure into this realm, and the corresponding anisotropic optical and optoelectronic properties are investigated both experimentally and theoretically for the first time. Remarkably, our prepared VP-based van der Waals phototransistor exhibits significant optoelectronic anisotropies with a giant in-plane anisotropic photocurrent ratio exceeding 10 and a comparable polarized dichroic ratio of 2.16, which is superior to those of most reported 2D counterparts. Our findings establish VP as an exceptional candidate for anisotropic optoelectronics, paving the way for future multifunctional applications.

9.
Planta ; 259(2): 31, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150094

RESUMO

Chlorogenic acid (CGA) and flavonoids are important secondary metabolites, which modulate plant growth and development, and contribute to plant resistance to various environmental stresses. ERF4 has been shown to be a repressor of anthocyanin accumulation in grape, but its full roles in regulating the biosynthesis of other phenylpropanoid compounds still needs to be further studied. In the present study, two NtERF4 genes were identified from N. tabacum genome. The expression level of NtERF4a was higher than that of NtERF4b in all the tobacco tissues examined. Over-expression of NtERF4a significantly promoted the accumulation of CGA and flavonoids in tobacco leaves, while silencing of NtERF4a significantly repressed the biosynthesis of CGA and flavonoids. RNA-seq analysis of NtERF4a-OE and WT plants revealed 8 phenylpropanoids-related differentially expressed genes (DEGs), including 4 NtPAL genes that encode key enzymes in the phenylpropanoid pathway. Activation of NtERF4a-GR fusion protein in tobacco significantly induced the transcription of NtPAL1 and NtPAL2 in the presence of protein synthesis inhibitor. Chromatin immunoprecipitation and Dual-Luc assays further indicated that NtERF4a could bind to the GCC box presented in the promoters of NtPAL1 and NtPAL2, thereby activating their transcription. Moreover, ectopic expression of NtERF4a induced the transcription of NtGSK1, NtMYC2, and NtJAZ3 genes, and enhanced the resistance of tobacco seedlings to salt and drought stresses, indicating multiple roles of NtERF4a in plants. Our findings revealed new roles of NtERF4a in modulating the accumulation of phenylpropanoid compounds in tobacco, and provided a putative target for improving phenylpropanoids synthesis and stress resistance in plants.


Assuntos
Flavonoides , Nicotiana , Nicotiana/genética , Ácido Clorogênico , Metabolismo Secundário , Antocianinas
10.
Nat Commun ; 14(1): 7655, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996491

RESUMO

High-performance organic neuromorphic devices with miniaturized device size and computing capability are essential elements for developing brain-inspired humanoid intelligence technique. However, due to the structural inhomogeneity of most organic materials, downscaling of such devices to nanoscale and their high-density integration into compact matrices with reliable device performance remain challenging at the moment. Herein, based on the design of a semicrystalline polymer PBFCL10 with ordered structure to regulate dense and uniform formation of conductive nanofilaments, we realize an organic synapse with the smallest device dimension of 50 nm and highest integration size of 1 Kb reported thus far. The as-fabricated PBFCL10 synapses can switch between 32 conductance states linearly with a high cycle-to-cycle uniformity of 98.89% and device-to-device uniformity of 99.71%, which are the best results of organic devices. A mixed-signal neuromorphic hardware system based on the organic neuromatrix and FPGA controller is implemented to execute spiking-plasticity-related algorithm for decision-making tasks.

11.
Brain Commun ; 5(5): fcad234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693814

RESUMO

Genetic risk factors such as APOE ε4 and MAPT (rs242557) A allele are associated with amyloid and tau pathways and grey matter changes at both early and established stages of Alzheimer's disease, but their effects on cortical morphology in young healthy adults remain unclear. A total of 144 participants aged from 18 to 24 underwent 3T MRI and genotyping for APOE and MAPT to investigate unique impacts of these genetic risk factors in a cohort without significant comorbid conditions such as metabolic and cardiovascular diseases. We segmented the cerebral cortex into 68 regions and calculated the cortical area, thickness, curvature and folding index for each region. Then, we trained machine learning models to classify APOE and MAPT genotypes using these morphological features. In addition, we applied a growing hierarchical self-organizing maps algorithm, which clustered the 68 regions into 4 subgroups representing different morphological patterns. Then, we performed general linear model analyses to estimate the interaction between APOE and MAPT on cortical patterns. We found that the classifiers using all cortical features could accurately classify individuals carrying genetic risks of dementia outperforming each individual feature alone. APOE ε4 carriers had a more convoluted and thinner cortex across the cerebral cortex. A similar pattern was found in MAPT A allele carriers only in the regions that are vulnerable for early tau pathology. With the clustering analysis, we found a synergetic effect between APOE ε4 and MAPT A allele, i.e. carriers of both risk factors showed the most deviation of cortical pattern from the typical pattern of that cluster. Genetic risk factors of dementia by APOE ε4 and MAPT (rs242557) A allele were associated with variations of cortical morphology, which can be observed in young healthy adults more than 30 years before Alzheimer's pathology is likely to occur and 50 years before dementia symptoms may begin.

12.
Plant Biotechnol J ; 21(12): 2641-2653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37610064

RESUMO

CRISPR/Cas-based genome editing is now extensively used in plant breeding and continues to evolve. Most CRISPR/Cas current applications in plants focus on gene knock-outs; however, there is a pressing need for new methods to achieve more efficient delivery of CRISPR components and gene knock-ins to improve agronomic traits of crop cultivars. We report here a genome editing system that combines the advantages of protoplast technologies with recent CRISPR/Cas advances to achieve seamless large fragment insertions in the model Solanaceae plant Nicotiana tabacum. With this system, two resistance-related regions of the N' gene were replaced with homologous fragments from the N'alata gene to confer TMV-U1 resistance in the T0 generation of GMO-free plants. Our study establishes a reliable genome-editing tool for efficient gene modifications and provides a detailed description of the optimization process to assist other researchers adapt this system for their needs.


Assuntos
Sistemas CRISPR-Cas , Nicotiana , Nicotiana/genética , Sistemas CRISPR-Cas/genética , Protoplastos , Melhoramento Vegetal , Edição de Genes/métodos , Plantas/genética , Genoma de Planta
13.
Crit Rev Eukaryot Gene Expr ; 33(6): 17-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522542

RESUMO

The chaperonin-containing TCP1 complex subunit 3 (CCT3) has been reported to be involved in the development and prognosis of many tumors, including cervical cancer (CC). This study aimed to analyze the expression and prognostic value of CCT3 in CC by bioinformatics and retrospective study. CCT3 gene expression profiles and clinical information in CC were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. CCT3 expression was verified by quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry (IHC). Logistic regression and chi-square testing were used to analyze the relationship between CCT3 expression and the clinical characteristics of CC. Kaplan-Meier and Cox analyses were used to evaluate whether CCT3 affects the prognosis of CC. Nomogram and calibration curves were used to test the predictive value of CCT3. The expression of CCT3 in CC tissues was significantly upregulated compared with that in adjacent benign tissues, and was related to HPV16/18 infection, grade, and positive lymph nodes. High expression of CCT3 is associated with poor prognosis of CC and can be used as an independent risk factor for CC. The prognostic model based on CCT3 and CC clinical features has good predictive ability. CCT3 is overexpressed in CC, which is related to poor prognosis and expected to become a biomarker for CC.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Prognóstico , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Estudos Retrospectivos , Papillomavirus Humano 18/metabolismo , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo
14.
J Neurol ; 270(10): 4949-4958, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358635

RESUMO

BACKGROUND: Past evidence shows that changes in functional brain connectivity in multiple resting-state networks occur in cognitively healthy individuals who have non-modifiable risk factors for Alzheimer's Disease. Here, we aimed to investigate how those changes differ in early adulthood and how they might relate to cognition. METHODS: We investigated the effects of genetic risk factors of AD, namely APOEe4 and MAPTA alleles, on resting-state functional connectivity in a cohort of 129 cognitively intact young adults (aged 17-22 years). We used Independent Component Analysis to identify networks of interest, and Gaussian Random Field Theory to compare connectivity between groups. Seed-based analysis was used to quantify inter-regional connectivity strength from the clusters that exhibited significant between-group differences. To investigate the relationship with cognition, we correlated the connectivity and the performance on the Stroop task. RESULTS: The analysis revealed a decrease in functional connectivity in the Default Mode Network (DMN) in both APOEe4 carriers and MAPTA carriers in comparison with non-carriers. APOEe4 carriers showed decreased connectivity in the right angular gyrus (size = 246, p-FDR = 0.0079), which was correlated with poorer performance on the Stroop task. MAPTA carriers showed decreased connectivity in the left middle temporal gyrus (size = 546, p-FDR = 0.0001). In addition, we found that only MAPTA carriers had a decreased connectivity between the DMN and multiple other brain regions. CONCLUSIONS: Our findings indicate that APOEe4 and MAPTA alleles modulate brain functional connectivity in the brain regions within the DMN in cognitively intact young adults. APOEe4 carriers also showed a link between connectivity and cognition.


Assuntos
Doença de Alzheimer , Humanos , Adulto , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética , Rede Nervosa , Fatores de Risco
15.
Materials (Basel) ; 16(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37048985

RESUMO

The mechanism of solid-state dendrite formation in high-aluminum Fe-Al alloys is not clear. Applying an in-situ observation technique, the real-time formation and growth of FeAl solid-state dendrites during the eutectoid decomposition of the high-temperature phase Fe5Al8 is visualized. In-situ experiments by HT-CSLM reveal that proeutectoid FeAl usually does not preferentially nucleate at grain boundaries regardless of rapid or slow cooling conditions. The critical radii for generating morphological instability are 1.2 µm and 0.9 µm for slow and rapid cooling, respectively. The morphology after both slow and rapid cooling exhibits dendrites, while there are differences in the size and critical instability radius Rc, which are attributed to the different supersaturation S and the number of protrusions l. The combination of crystallographic and thermodynamic analysis indicates that solid-state dendrites only exist on the hypoeutectoid side in high-aluminum Fe-Al alloys. A large number of lattice defects in the parent phase provides an additional driving force for nucleation, leading to coherent nucleation from the interior of the parent phase grains based on the orientation relationship {3¯30}Fe5Al8//{1¯10}FeAl, <111¯>Fe5Al8//<111¯>FeAl. The maximum release of misfit strain energy leads to the preferential growth of the primary arm of the nucleus along <111¯> {1¯10}. During the rapid cooling process, a large supersaturation is induced in the matrix, driving the Al atoms to undergo unstable uphill diffusion and causing variations in the concentration gradient as well as generating constitutional undercooling, ultimately leading to morphological instability and the growth of secondary arms.

16.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903681

RESUMO

Memristors have been considered to be more efficient than traditional Complementary Metal Oxide Semiconductor (CMOS) devices in implementing artificial synapses, which are fundamental yet very critical components of neurons as well as neural networks. Compared with inorganic counterparts, organic memristors have many advantages, including low-cost, easy manufacture, high mechanical flexibility, and biocompatibility, making them applicable in more scenarios. Here, we present an organic memristor based on an ethyl viologen diperchlorate [EV(ClO4)]2/triphenylamine-containing polymer (BTPA-F) redox system. The device with bilayer structure organic materials as the resistive switching layer (RSL) exhibits memristive behaviors and excellent long-term synaptic plasticity. Additionally, the device's conductance states can be precisely modulated by consecutively applying voltage pulses between the top and bottom electrodes. A three-layer perception neural network with in situ computing enabled was then constructed utilizing the proposed memristor and trained on the basis of the device's synaptic plasticity characteristics and conductance modulation rules. Recognition accuracies of 97.3% and 90% were achieved, respectively, for the raw and 20% noisy handwritten digits images from the Modified National Institute of Standards and Technology (MNIST) dataset, demonstrating the feasibility and applicability of implementing neuromorphic computing applications utilizing the proposed organic memristor.

17.
Materials (Basel) ; 16(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36984201

RESUMO

With the aim of obtaining a refining flux that is stable and provides effective refining of aluminum melt, a new strategy of designing the flux composition has been proposed. Ten fluxes were designed, by selecting ten molten salt compounds according to their thermophysical parameters, physical properties, and thermodynamic analysis. The melting points of the ten fluxes, and the phases transformation of the fluxes after melting, were studied by DSC and XRD, respectively. The contact angles between four groups of fluxes and alumina at refinement temperatures were studied, and the effect of refinement was characterized by a metallographic microscope. The process of the fluxes removing inclusions and degassing was analyzed thermodynamically. The research findings indicate that flux #10 (11.0 wt.%NaF, 29.5 wt.%NaCl, 46.5 wt.%Na2CO3, 3.0 wt.%CaF2, 10.0 wt.%Na3AlF6) has a melting point (562.2 °C) below the refining temperature. At the refining temperature (760 °C), flux #10 has the lowest contact angle, of 12.78°. In addition, compared to that of flux STJ-A3, currently used in practice, flux #10 has a better refining effectiveness, with the pores and inclusions content of the sample being reduced to 1.11% from 2.96%.

18.
Pathol Oncol Res ; 28: 1610643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419649

RESUMO

Background: The aim of this study was to construct a glycolysis-related long noncoding RNA (lncRNA) signature to predict the prognosis of patients with gastric cancer (GC). Methods: Glycolysis-related genes were obtained from the Molecular Signatures Database (MSigDB), lncRNA expression profiles and clinical data of GC patients were obtained from The Cancer Genome Atlas database (TCGA). Furthermore, univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) and multivariate Cox regression analysis were used to construct prognostic glycolysis-related lncRNA signature. The specificity and sensitivity of the signature was verified by receiver operating characteristic (ROC) curves. We constructed a nomogram to predict the 1-year, 3-year, and 5-year survival rates of GC patients. Besides, the relationship between immune infiltration and the risk score was analyzed in the high and low risk groups. Multi Experiment Matrix (MEM) was used to analyze glycolysis-related lncRNA target genes. R "limma" package was used to analyze the mRNA expression levels of the glycolysis-related lncRNA target genes in TCGA. Gene set enrichment analysis (GSEA) was employed to further explore the biological pathways in the high-risk group and the glycolysis-related lncRNA target gene. Results: A prognostic signature was conducted based on nine glycolysis-related lncRNAs, which are AL391152.1, AL590705.3, RHOXF1-AS1, CFAP61-AS1, LINC00412, AC005165.1, AC110995.1, AL355574.1 and SCAT1. The area under the ROC curve (AUC) values at 1-year, 3-year, and 5-year were 0.765, 0.828 and 0.707 in the training set, and 0.669, 740 and 0.807 in the testing set, respectively. In addition, the nomogram could efficaciously predict the 1-year, 3-year, and 5-year survival rates of the GC patients. Then, we discovered that GC patients with high-risk scores were more likely to respond to immunotherapy. GSEA revealed that the signature was mainly associated with the calcium signaling pathway, extracellular matrix (ECM) receptor interaction, and focal adhesion in high-risk group, also indicated that SBSPON is related to aminoacyl-tRNA biosynthesis, citrate cycle, fructose and mannose metabolism, pentose phosphate pathway and pyrimidine metabolism. Conclusion: Our study shows that the signature can predict the prognosis of GC and may provide new insights into immunotherapeutic strategies.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Glicólise/genética , Fatores de Risco , Imunoterapia
19.
Nanomaterials (Basel) ; 12(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35808058

RESUMO

In-sensor computing can simultaneously output image information and recognition results through in-situ visual signal processing, which can greatly improve the efficiency of machine vision. However, in-sensor computing is challenging due to the requirement to controllably adjust the sensor's photosensitivity. Herein, it is demonstrated a ternary cationic halide Cs0.05FA0.81MA0.14 Pb(I0.85Br0.15)3 (CsFAMA) perovskite, whose External quantum efficiency (EQE) value is above 80% in the entire visible region (400-750 nm), and peak responsibility value at 750 nm reaches 0.45 A/W. In addition, the device can achieve a 50-fold enhancement of the photoresponsibility under the same illumination by adjusting the internal ion migration and readout voltage. A proof-of-concept visually enhanced neural network system is demonstrated through the switchable photosensitivity of the perovskite sensor array, which can simultaneously optimize imaging and recognition results and improve object recognition accuracy by 17% in low-light environments.

20.
Front Med (Lausanne) ; 8: 672595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291059

RESUMO

Background: The aim of this study was to investigate the prognostic significance of faciogenital dysplasia 6 (FGD6) in gastric cancer (GC). Methods: The data of GC patients from The Cancer Genome Atlas (TCGA) database were used for the primary study. Then, our data were validated by the GEO database and RuiJin cohort. The relationship between the FGD6 level and various clinicopathological features was analyzed by logistic regression and univariate Cox regression. Multivariate Cox regression analysis was used to evaluate whether FGD6 was an independent prognostic factor for survival of patients with GC. The relationship between FGD6 and overall survival time was explored by the Kaplan-Meier method. In addition, gene set enrichment analysis (GSEA) was performed to investigate the possible biological processes of FGD6. Results: The FGD6 level was significantly overexpressed in GC tissues, compared with adjacent normal tissues. The high expression of FGD6 was related to a high histological grade, stage, and T classification and poor prognosis of GC. Multivariate Cox regression analysis showed that FGD6 was an independent prognostic factor for survival of patients with GC. GSEA identified that the high expression of FGD6 was mainly enriched in regulation of actin cytoskeleton. Conclusion: FGD6 may be a prognostic biomarker for predicting the outcome of patients with GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA