Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 140: 112830, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096872

RESUMO

High-concentration fluoride treatment is commonly used to prevent dental caries in the oral cavity, and fluorine-containing protective paint is used to alleviate common root sensitivity symptoms in patients with periodontitis after periodontal treatment. Recent studies have confirmed its safe use in normal oral environments. However, whether fluoride treatment affects the progression of periodontitis in an inflammatory microenvironment remains unclear. Immunometabolism is crucial for maintaining bone regeneration and repair in periodontitis, and the precise regulation of macrophage polarisation is crucial to this process. Fluoride can influence the immune microenvironment of bone tissue by regulating immune metabolic processes. Herein, we investigated the effects of high concentrations of sodium fluoride (NaF) on periodontal tissues. We examined the expression of osteogenic and M1/M2 macrophage polarisation markers and glucose metabolism in macrophages. RNA sequencing was used to study differentially expressed genes related to M1 polarisation and glucose metabolism in treated macrophages. The results showed that NaF indirectly affects human periodontal ligament cells (hPDLCs), aggravating bone loss, tissue destruction, and submandibular lymph node drainage. Furthermore, NaF promoted glycolysis in macrophages and M1 polarisation while inhibiting osteogenic differentiation. These findings suggest that NaF has a direct effect on hPDLCs. Moreover, we found that high concentrations of NaF stimulated M1 polarisation in macrophages by promoting glycolysis. Overall, these results suggest that M1 macrophages promote the osteoclastic ability of hPDLCs and inhibit their osteogenic ability, eventually aggravating periodontitis. These findings provide important insights into the mechanism of action of NaF in periodontal tissue regeneration and reconstruction, which is critical for providing appropriate recommendations for the use of fluoride in patients with periodontitis.

2.
Int J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954658

RESUMO

BACKGROUND: Tibial cortex transverse transport (TTT) surgery has become an ideal treatment for patients with type 2 severe diabetic foot ulcerations (DFUs) while conventional treatments are ineffective. Based on our clinical practice experience, the protective immune response from TTT surgery may play a role against infections to promote wound healing in patients with DFUs. Therefore, this research aimed to systematically study the specific clinical efficacy and the mechanism of TTT surgery. MATERIALS AND METHODS: Between June 2022 and September 2023, 68 patients with type 2 severe DFUs were enrolled and therapized by TTT surgery in this cross-sectional and experimental study. Major clinical outcomes including limb salvage rate and antibiotics usage rate were investigated. Ten clinical characteristics and laboratory features of glucose metabolism and kidney function were statistically analyzed. Blood samples from 6 key time points of TTT surgery were collected for label-free proteomics and clinical immune biomarker analysis. Besides, tissue samples from 3 key time points were for spatially resolved metabolomics and transcriptomics analysis, as well as applied to validate the key TTT-regulated molecules by RT-qPCR. RESULTS: Notably, 64.7% of patients did not use antibiotics during the entire TTT surgery. TTT surgery can achieve a high limb salvage rate of 92.6% in patients with unilateral or bilateral DFUs. Pathway analysis of a total of 252 differentially expressed proteins (DEPs) from the proteomic revealed that the immune response induced by TTT surgery at different stages was first comprehensively verified through multi-omics combined with immune biomarker analysis. The function of upward transport was activating the systemic immune response, and wound healing occurs with downward transport. The spatial metabolic characteristics of skin tissue from patients with DFUs indicated downregulated levels of stearoylcarnitine and the glycerophospholipid metabolism pathway in skin tissue from patients with severe DFUs. Finally, the expressions of PRNP (prion protein) to activate the immune response, PLCB3 (PLCB3, phospholipase C beta 3) and VE-cadherin to play roles in neovascularization, and PPDPF (pancreatic progenitor cell differentiation and proliferation factor), LAMC2 (laminin subunit gamma 2) and SPRR2G (small proline rich protein 2G) to facilitate the developmental process mainly keratinocyte differentiation were statistically significant in skin tissues through transcriptomic and RT-qPCR analysis. CONCLUSION: Tibial cortex transverse transport (TTT) surgery demonstrates favorable outcomes for patients with severe type 2 DFUs by activating a systemic immune response, contributing to anti-infection, ulcer recurrence, and the limb salvage rate for unilateral or bilateral DFUs. The specific clinical immune responses, candidate proteins, genes, and metabolic characteristics provide directions for in-depth mechanistic research on TTT surgery. Further research and public awareness are needed to optimize TTT surgery in patients with severe type 2 DFUs.

3.
Neuroscience ; 551: 246-253, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38843987

RESUMO

Recent studies evidenced the involvement of circular RNA (circRNA) in neuroinflammation, apoptosis, and synaptic remodeling suggesting an important role for circRNA in the occurrence and development of epilepsy. This review provides an overview of circRNAs considered to be playing regulatory roles in the process of epilepsy and to be involved in multiple biological epilepsy-related processes, such as hippocampal sclerosis, inflammatory response, cell apoptosis, synaptic remodeling, and cell proliferation and differentiation. This review covers the current research status of differential expression of circRNA-mediated seizures, m6A methylation, demethylation-mediated seizures in post transcriptional circRNA modification, as well as the mechanisms of m5C- and m7G-modified circRNA. In summary, this article reviews the research progress on the relationship between circRNA in non-coding RNA and epilepsy.


Assuntos
Epilepsia , RNA Circular , RNA Circular/metabolismo , RNA Circular/genética , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Animais
4.
Microbiol Res ; 285: 127788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833831

RESUMO

Oral microbiota and gastrointestinal microbiota, the two largest microbiomes in the human body, are closely correlated and frequently interact through the oral-gut axis. Recent research has focused on the roles of these microbiomes in human health and diseases. Under normal conditions, probiotics and commensal bacteria can positively impact health. However, altered physiological states may induce dysbiosis, increasing the risk of pathogen colonization. Studies suggest that oral and gastrointestinal pathogens contribute not only to localized diseases at their respective colonized sites but also to the progression of systemic diseases. However, the mechanisms by which bacteria at these local sites are involved in systemic diseases remain elusive. In response to this gap, the focus has shifted to bacterial extracellular vesicles (BEVs), which act as mediators of communication between the microbiota and the host. Numerous studies have reported the targeted delivery of bacterial pathogenic substances from the oral cavity and the gastrointestinal tract to distant organs via BEVs. These pathogenic components subsequently elicit specific cellular responses in target organs, thereby mediating the progression of systemic diseases. This review aims to elucidate the extensive microbial communication via the oral-gut axis, summarize the types and biogenesis mechanisms of BEVs, and highlight the translocation pathways of oral and gastrointestinal BEVs in vivo, as well as the impacts of pathogens-derived BEVs on systemic diseases.


Assuntos
Bactérias , Disbiose , Vesículas Extracelulares , Microbioma Gastrointestinal , Boca , Vesículas Extracelulares/metabolismo , Humanos , Boca/microbiologia , Bactérias/classificação , Bactérias/genética , Disbiose/microbiologia , Animais , Trato Gastrointestinal/microbiologia , Probióticos
5.
Int J Clin Pract ; 2024: 1386980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481823

RESUMO

Background: Tenapanor is a locally acting selective sodium-hydrogen exchanger 3 inhibitor with the potential to treat sodium/phosphorus and fluid overload in various cardiac-renal diseases, which has been approved for constipation-predominant irritable bowel syndrome in the US. The pharmacokinetics (PK) of tenapanor and its metabolite tenapanor-M1 (AZ13792925), as well as the safety and tolerability of tenapanor, were investigated in healthy Chinese and Caucasian subjects. Methods: This randomized, open-label, single-center, placebo-controlled phase 1 study (https://www.chinadrugtrials.org.cn; CTR20201783) enrolled Chinese and Caucasian healthy volunteers into 4 parallel cohorts (3 cohorts for Chinese subjects, 1 cohort for Caucasian subjects). In each cohort, 15 subjects were expected to be included and received oral tenapanor (10 or 30 mg as single dose, or 50 mg as a single dose followed by a twice-daily repeated dose from Day 5 to 11, with a single dose in the morning on Day 11) or placebo in a 4 : 1 ratio. Results: 59 healthy volunteers received tenapanor 10 mg (n = 12 Chinese), 30 mg (n = 12 Chinese), or 50 mg (n = 12 (Chinese), n = 11 (Caucasian)) or placebo (n = 12, 3 per cohort). After single and twice-daily repeated doses, tenapanor plasma concentrations were all below the limit of quantitation; tenapanor-M1 appeared slowly in plasma. In single-ascending dose evaluation (10 to 50 mg) of Chinese subjects, the mean Cmax, AUC0-t, and AUC0-∞ of tenapanor-M1 increased with increasing dose level, and AUC0-t increased approximately dose proportionally. The Cmax accumulation ratio was 1.55 to 6.92 after 50 mg repeated dose in Chinese and Caucasian subjects. Exposure to tenapanor-M1 was generally similar between the Chinese and Caucasian subjects. Tenapanor was generally well-tolerated and the safety profile was similar between the Chinese and Caucasian participants receiving tenapanor 50 mg, as measured by vital signs, physical and laboratory examination, 12-lead ECG, and adverse events. No serious adverse event or adverse event leading to withdrawal occurred. Conclusion: Tenapanor was well-tolerated, with similar PK and safety profiles between Chinese and Caucasian subjects. This trial is registered with CTR20201783.


Assuntos
Síndrome do Intestino Irritável , Sulfonamidas , Humanos , Isoquinolinas/efeitos adversos , Isoquinolinas/farmacocinética , Área Sob a Curva , Método Duplo-Cego , Voluntários Saudáveis , China , Relação Dose-Resposta a Droga
6.
Exp Biol Med (Maywood) ; 249: 10108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510490

RESUMO

Acute myeloid leukemia (AML) is one of the most threatening hematological malignances. cGAS-STING pathway plays an important role in tumor immunity and development. However, the prognostic role of cGAS-STING pathway in AML remains unknown. Firstly, The expression of cGAS and STING was analyzed by bioinformatics analysis. Subsequently, Bone marrow samples were collected from 120 AML patients and 15 healthy individuals in an independent cohort. The cGAS and STING expression was significantly elevated in AML patients compared with healthy controls. Patients with high cGAS and STING expression had a higher NRAS/KRAS mutation rate and lower complete remission (CR) rate. High cGAS and STING expression was significantly associated with lower overall survival (OS) and disease-free survival (DFS). Our findings revealed that the expression levels of cGAS and STING in AML are elevated. High expression of cGAS and STING correlated with worse OS and DFS and may be a useful biomarker for inferior prognosis in AML patients.


Assuntos
Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/metabolismo , Intervalo Livre de Doença , Expressão Gênica
7.
Chemosphere ; 354: 141649, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458356

RESUMO

To avoid the difficulty of separating solids from liquids when reusing powder photocatalysts, 3D stereoscopic photocatalysts were constructed. In this study, three-dimensional S defect-rich MoS2 hierarchical aerogel was prepared by chemical cross-linking of functional ultrathin 2D MoS2. Its phase, micro-morphology and structure were characterized, and it was used in the study of photocatalytic degradation of organic pollutants. Of the samples tested, MS@CA-3 (i.e., defect-rich 3D MoS2 aerogel with a loading of 30 mg of defect-rich MoS2) exhibited the best photocatalytic activity due to its suitable load, good light transmission, and a degradation rate of up to 91.0% after 3 h. In addition, MS@CA-3 aerogel offers high recyclability and structural stability, and the degradation rate of the organic pollutant methylene blue decreases only 9.8% after more than ten cycles of photocatalytic degradation. It combines the high catalytic performance of S defect-rich 2D MoS2 and the convenient reusability of hierarchical porous aerogel. This study provides valuable data and a reference for the practical promotion and application of photocatalytic technology in the field of environmental remediation.


Assuntos
Poluentes Ambientais , Molibdênio , Porosidade , Catálise , Corantes
8.
Curr Microbiol ; 81(4): 93, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334775

RESUMO

The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Linhagem Celular Tumoral , Colforsina/farmacologia , Vírus do Sarampo/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
9.
J Autoimmun ; 143: 103169, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340675

RESUMO

Bone aging is characterized by an imbalance in the physiological and pathological processes of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis, resulting in exacerbated bone loss and the development of age-related bone diseases, including osteoporosis, osteoarthritis, rheumatoid arthritis, and periodontitis. Inflammaging, a novel concept in the field of aging research, pertains to the persistent and gradual escalation of pro-inflammatory reactions during the aging process. This phenomenon is distinguished by its low intensity, systemic nature, absence of symptoms, and potential for management. The mechanisms by which inflammaging contribute to age-related chronic diseases, particularly in the context of age-related bone diseases, remain unclear. The precise manner in which systemic inflammation induces bone aging and consequently contributes to the development of age-related bone diseases has yet to be fully elucidated. This article primarily examines the mechanisms underlying inflammaging and its association with age-related bone diseases, to elucidate the potential mechanisms of inflammaging in age-related bone diseases and offer insights for developing preventive and therapeutic strategies for such conditions.


Assuntos
Doenças Ósseas , Osteoartrite , Humanos , Envelhecimento , Inflamação/tratamento farmacológico , Doença Crônica , Doenças Ósseas/etiologia
10.
Cancer Cell Int ; 23(1): 330, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110984

RESUMO

BACKGROUND: Increasing evidence highlights the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of renal cell carcinoma (RCC). Here, we explored the mechanism of AGAP2-AS1 in the occurrence and development of clear cell RCC (ccRCC) involving IGF2BP3/miR-9-5p/THBS2. METHODS: The expressions of AGAP2-AS1, IGF2BP3, miR-9-5p, and THBS2 and their relationship were analyzed by bioinformatics. The targeting relationship between AGAP2-AS1 and miR-9-5p and between miR-9-5p and THBS2 was evaluated with their effect on cell biological behaviors and macrophage polarization assayed. Finally, we tested the effect of AGAP2-AS1 on ccRCC tumor formation in xenograft tumors. RESULTS: IGF2BP3 could stabilize AGAP2-AS1 through m6A modification. AGAP2-AS1 was highly expressed in ccRCC tissues and cells. The lentivirus-mediated intervention of AGAP2-AS1 induced malignant behaviors of ccRCC cells and led to M2 polarization of macrophages. In addition, THBS2 promoted M2 polarization of macrophages by activating the PI3K/AKT signaling pathway. AGAP2-AS1 could directly bind with miR-9-5p and promote the expression of THBS2 downstream of miR-9-5p. These results were further verified by in vivo experiments. CONCLUSION: AGAP2-AS1 stabilized by IGF2BP3 competitively binds to miR-9-5p to up-regulate THBS2, activating the PI3K/AKT signaling pathway and inducing macrophage M2 polarization, thus facilitating the development of RCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA