Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2307782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303684

RESUMO

Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.


Assuntos
Implantes Absorvíveis , Eletrônica , Água/química
2.
Sci Adv ; 9(9): eade7375, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867693

RESUMO

Bovine pericardium (BP) has been used as leaflets of prosthetic heart valves. The leaflets are sutured on metallic stents and can survive 400 million flaps (~10-year life span), unaffected by the suture holes. This flaw-insensitive fatigue resistance is unmatched by synthetic leaflets. We show that the endurance strength of BP under cyclic stretch is insensitive to cuts as long as 1 centimeter, about two orders of magnitude longer than that of a thermoplastic polyurethane (TPU). The flaw-insensitive fatigue resistance of BP results from the high strength of collagen fibers and soft matrix between them. When BP is stretched, the soft matrix enables a collagen fiber to transmit tension over a long length. The energy in the long length dissipates when the fiber breaks. We demonstrate that a BP leaflet greatly outperforms a TPU leaflet. It is hoped that these findings will aid the development of soft materials for flaw-insensitive fatigue resistance.


Assuntos
Matriz Extracelular , Longevidade , Animais , Bovinos , Estado Nutricional , Pericárdio , Poliuretanos , Colágeno
3.
Soft Matter ; 18(33): 6192-6199, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35856647

RESUMO

Achieving tough and stable tissue adhesion under a physiological environment is of great significance for the clinical applications of hydrogel adhesives. The current tough hydrogel adhesives face challenges in the preservation of the maximal adhesion for a long time due to swelling. Here, we propose a double-network strategy for tough tissue adhesion by a hydrogel with long-term stability under a physiological environment. A double-network hydrogel consisting of a covalently crosslinked primary network with tunable hydrophilicity and a non-covalently crosslinked secondary network with functional groups is designed. The primary network exhibited hydrophobicity in the physiological environment, which could constrict the secondary network and limit the swelling of the entire hydrogel. The secondary network could form strong interlinks with tissue and provide large energy dissipation through the unzipping of its noncovalent crosslinks when separated by a force. The combination of the two networks resulted in a tough and stable tissue adhesion. A poly(N-isopropylacrylamide)/calcium alginate hydrogel synthesized based on this strategy realized an adhesion energy of 300-500 J m-2 with porcine tissues, and the maximal adhesion could be maintained for over 1000 min after submerging in a PBS solution at 37 °C. The swelling behavior of the hydrogel and changes in mechanical properties under the physiological environment are studied, and its application in repairing the aorta wound is demonstrated.


Assuntos
Alginatos , Hidrogéis , Animais , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Suínos , Aderências Teciduais
4.
Soft Matter ; 17(35): 8059-8067, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524342

RESUMO

Magnetic hydrogels have found a myriad of applications in bioengineering and soft robotics. As the function of magnetic hydrogels is affected by the distribution of magnetic nanoparticles, it is imperative to propose a strategy for fabricating patterned magnetic hydrogels. However, previous strategies can only achieve very simple distribution by using external magnetic fields to guide the chain-like assembly of nanoparticles. It remains challenging to realize the complex distribution of magnetic nanoparticles in a hydrogel. Here we propose an ion transfer printing strategy to prepare patterned magnetic hydrogels, taking advantage of the ion permeation and nanoparticle precipitation in the hydrogel. The polyacrylamide (PAAm) hydrogel is loaded with Fe2+/Fe3+ ions and covered with a patterned filter paper with OH- ions to generate Fe3O4 nanoparticles locally. The effect of the ion concentration and covering time on the generation of nanoparticles is investigated by using a reaction-diffusion model. Furthermore, the magnetothermal response of the patterned magnetic hydrogels has been characterized to reveal the distribution and thermogenesis of magnetic nanoparticles. We hope that the fabricated magnetic hydrogels with complex patterns can open up new opportunities for applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA