Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(7): e0344123, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864649

RESUMO

This study aimed to characterize the composition of intestinal and nasal microbiota in septic patients and identify potential microbial biomarkers for diagnosis. A total of 157 subjects, including 89 with sepsis, were enrolled from the affiliated hospital. Nasal swabs and fecal specimens were collected from septic and non-septic patients in the intensive care unit (ICU) and Department of Respiratory and Critical Care Medicine. DNA was extracted, and the V4 region of the 16S rRNA gene was amplified and sequenced using Illumina technology. Bioinformatics analysis, statistical processing, and machine learning techniques were employed to differentiate between septic and non-septic patients. The nasal microbiota of septic patients exhibited significantly lower community richness (P = 0.002) and distinct compositions (P = 0.001) compared to non-septic patients. Corynebacterium, Staphylococcus, Acinetobacter, and Pseudomonas were identified as enriched genera in the nasal microbiota of septic patients. The constructed machine learning model achieved an area under the curve (AUC) of 89.08, indicating its efficacy in differentiating septic and non-septic patients. Importantly, model validation demonstrated the effectiveness of the nasal microecological diagnosis prediction model with an AUC of 84.79, while the gut microecological diagnosis prediction model had poor predictive performance (AUC = 49.24). The nasal microbiota of ICU patients effectively distinguishes sepsis from non-septic cases and outperforms the gut microbiota. These findings have implications for the development of diagnostic strategies and advancements in critical care medicine.IMPORTANCEThe important clinical significance of this study is that it compared the intestinal and nasal microbiota of sepsis with non-sepsis patients and determined that the nasal microbiota is more effective than the intestinal microbiota in distinguishing patients with sepsis from those without sepsis, based on the difference in the lines of nasal specimens collected.


Assuntos
Bactérias , Biomarcadores , Fezes , Unidades de Terapia Intensiva , Microbiota , RNA Ribossômico 16S , Sepse , Humanos , Sepse/diagnóstico , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , RNA Ribossômico 16S/genética , Biomarcadores/análise , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Fezes/microbiologia , Adulto , Aprendizado de Máquina , Microbioma Gastrointestinal , Nariz/microbiologia , Corynebacterium/isolamento & purificação , Corynebacterium/genética , Acinetobacter/isolamento & purificação , Acinetobacter/genética , Idoso de 80 Anos ou mais , Staphylococcus/isolamento & purificação , Staphylococcus/genética , Pseudomonas/isolamento & purificação , Pseudomonas/genética
2.
Clin Kidney J ; 16(11): 1965-1973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915931

RESUMO

Background: Chronic kidney disease (CKD) has emerged as a significant challenge to human health and economic stability in aging societies worldwide. Current clinical practice strategies remain insufficient for the early identification of kidney dysfunction, and the differential diagnosis of immunoglobulin A nephropathy (IgAN) predominantly relies on invasive kidney biopsy procedures. Methods: First, we assessed a case-control cohort to obtain urine samples from healthy controls and biopsy-confirmed CKD patients. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) was applied to detect urinary peptide and then these urinary peptide profiles were used to construct diagnostic models to distinguish CKD patients from controls and identify IgAN patients from other nephropathy patients. Furthermore, we assessed the robustness of the diagnostic models and their reproducibility by applying different algorithms. Results: A rapid and accurate working platform for detecting CKD and its IgAN subtype based on urinary peptide pattern detected by MALDI-TOF MS was established. Naturally occurring urinary peptide profiles were used to construct a diagnostic model to distinguish CKD patients from controls and identify IgAN patients from other nephropathy patients. The performance of several algorithms was assessed and demonstrated that the robustness of the diagnostic models as well as their reproducibility were satisfactory. Conclusions: The present findings suggest that the CKD-related and IgAN-specific urinary peptides discovered facilitate precise identification of CKD and its IgAN subtype, offering a dependable framework for screening conditions linked to renal dysfunction. This will aid in comprehending the pathogenesis of nephropathy and identifying potential protein targets for the clinical management of nephropathy.

3.
Ultrason Sonochem ; 101: 106652, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865008

RESUMO

In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.


Assuntos
Ácido Palmítico , Pueraria , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pueraria/química , Ultrassom , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Hepatócitos/metabolismo , Antioxidantes/química
4.
Nat Commun ; 14(1): 3338, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286542

RESUMO

Secreted proteins are one of the direct molecular mechanisms by which microbiota influence the host, thus constituting a promising field for drug discovery. Here, through bioinformatics-guided screening of the secretome of clinically established probiotics from Lactobacillus, we identify an uncharacterized secreted protein (named LPH here) that is shared by most of these probiotic strains (8/10) and demonstrate that it protects female mice from colitis in multiple models. Functional studies show that LPH is a bi-functional peptidoglycan hydrolase with both N-Acetyl-ß-D-muramidase and DL-endopeptidase activities that can generate muramyl dipeptide (MDP), a NOD2 ligand. Different active site mutants of LPH in combination with Nod2 knockout female mice confirm that LPH exerts anti-colitis effects through MDP-NOD2 signaling. Furthermore, we validate that LPH can also exert protective effects on inflammation-associated colorectal cancer in female mice. Our study reports a probiotic enzyme that enhances NOD2 signaling in vivo in female mice and describes a molecular mechanism that may contribute to the effects of traditional Lactobacillus probiotics.


Assuntos
Colite , Probióticos , Camundongos , Feminino , Animais , Ligantes , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo
5.
Sci China Life Sci ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37202543

RESUMO

Gut barrier disruption is a key event in bridging gut microbiota dysbiosis and high-fat diet (HFD)-associated metabolic disorders. However, the underlying mechanism remains elusive. In the present study, by comparing HFD- and normal diet (ND)-treated mice, we found that the HFD instantly altered the composition of the gut microbiota and subsequently damaged the integrity of the gut barrier. Metagenomic sequencing revealed that the HFD upregulates gut microbial functions related to redox reactions, as confirmed by the increased reactive oxygen species (ROS) levels in fecal microbiota incubation in vitro and in the lumen, which were detected using in vivo fluorescence imaging. This microbial ROS-producing capability induced by HFD can be transferred through fecal microbiota transplantation (FMT) into germ-free (GF) mice, downregulating the gut barrier tight junctions. Similarly, mono-colonizing GF mice with an Enterococcus strain excelled in ROS production, damaged the gut barrier, induced mitochondrial malfunction and apoptosis of the intestinal epithelial cells, and exacerbated fatty liver, compared with other low-ROS-producing Enterococcus strains. Oral administration of recombinant high-stability-superoxide dismutase (SOD) significantly reduced intestinal ROS, protected the gut barrier, and improved fatty liver against the HFD. In conclusion, our study suggests that extracellular ROS derived from gut microbiota play a pivotal role in HFD-induced gut barrier disruption and is a potential therapeutic target for HFD-associated metabolic diseases.

6.
Brain Behav Immun ; 105: 15-26, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35714916

RESUMO

Autism spectrum disorder (ASD) is a neurological and developmental disorder accompanied by gut dysbiosis and gastrointestinal symptoms in most cases. However, the development of the autism-related gut microbiota and its relationship with intestinal dysfunction in ASD remain unclear. Using a valproic acid (VPA)-induced ASD mouse model, we showed a congenitally immature intestine of VPA-exposed mice accompanied by prominent oxidative stress and inflammation. Of note, the gut microbiota composition of VPA-exposed mice resembled that of control mice within 24 h after birth; however, their gut microbiota compositions differed on postnatal days 7 and 21. Oral administration of superoxide dismutase (SOD) to attenuate intestinal oxidative stress either before weaning or during juvenile restored the autism-associated gut microbiota, leading to the amelioration of autism-related behaviors. These findings collectively suggest the congenitally underdeveloped intestine as an early driving force shaping the autism-associated gut microbiota and host neurodevelopment through enhancing oxidative stress.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Disbiose , Intestinos , Camundongos , Ácido Valproico
7.
Gut ; 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558272

RESUMO

OBJECTIVE: Stroke is a leading cause of death and disability worldwide. Neuroprotective approaches have failed in clinical trials, thus warranting therapeutic innovations with alternative targets. The gut microbiota is an important contributor to many risk factors for stroke. However, the bidirectional interactions between stroke and gut microbiota remain largely unknown. DESIGN: We performed two clinical cohort studies to capture the gut dysbiosis dynamics after stroke and their relationship with stroke prognosis. Then, we used a middle cerebral artery occlusion model to explore gut dysbiosis post-stroke in mice and address the causative relationship between acute ischaemic stroke and gut dysbiosis. Finally, we tested whether aminoguanidine, superoxide dismutase and tungstate can alleviate post-stroke brain infarction by restoring gut dysbiosis. RESULTS: Brain ischaemia rapidly induced intestinal ischaemia and produced excessive nitrate through free radical reactions, resulting in gut dysbiosis with Enterobacteriaceae expansion. Enterobacteriaceae enrichment exacerbated brain infarction by enhancing systemic inflammation and is an independent risk factor for the primary poor outcome of patients with stroke. Administering aminoguanidine or superoxide dismutase to diminish nitrate generation or administering tungstate to inhibit nitrate respiration all resulted in suppressed Enterobacteriaceae overgrowth, reduced systemic inflammation and alleviated brain infarction. These effects were gut microbiome dependent and indicated the translational value of the brain-gut axis in stroke treatment. CONCLUSIONS: This study reveals a reciprocal relationship between stroke and gut dysbiosis. Ischaemic stroke rapidly triggers gut microbiome dysbiosis with Enterobacteriaceae overgrowth that in turn exacerbates brain infarction.

8.
PeerJ ; 8: e9591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832265

RESUMO

The link between the gut microbiota and metabolic syndrome (MetS) has attracted widespread attention. Christensenellaceae was recently described as an important player in human health, while its distribution and relationship with MetS in Chinese population is still unknown. This study sought to observe the association between Christensenellaceae and metabolic indexes in a large sample of residents in South China. A total of 4,781 people from the GGMP project were included, and the fecal microbiota composition of these individuals was characterized by 16S rRNA sequencing and analyzed the relation between Christensenellaceae and metabolism using QIIME (Quantitative Insight Into Microbial Ecology, Version 1.9.1). The results demonstrated that microbial richness and diversity were increased in the group with a high abundance of Christensenellaceae, who showed a greater complexity of the co-occurrence network with other bacteria than residents who lacked Christensenellaceae. The enriched bacterial taxa were predominantly represented by Oscillospira, Ruminococcaceae, RF39, Rikenellaceae and Akkermansia as the Christensenellaceae abundance increased, while the abundances of Veillonella, Fusobacterium and Klebsiella were significantly reduced. Furthermore, Christensenellaceae was negatively correlated with the pathological features of MetS, such as obesity, hypertriglyceridemia and body mass index (BMI). We found reduced levels of lipid biosynthesis and energy metabolism pathways in people with a high abundance of Christensenellaceae, which may explain the negative relationship between body weight and Christensenellaceae. In conclusion, we found a negative correlation between Christensenellaceae and MetS in a large Chinese population and reported the geographical distribution of Christensenellaceae in the GGMP study. The association data from this population-level research support the investigation of strains within Christensenellaceae as potentially beneficial gut microbes.

9.
Int J Syst Evol Microbiol ; 70(5): 2988-2997, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32369000

RESUMO

A novel, Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, obligately anaerobic bacterium, designated strain ZHW00191T, was isolated from human faeces and characterized by using a polyphasic taxonomic approach. Growth occurred at 25-45 °C (optimum, 37-42 °C), at pH 5.5-10.0 (optimum, pH 6.5-7.0) and with 0-2 % (w/v) NaCl (optimum, 0 %). The end products of glucose fermentation were acetic acid, isobutyric acid and isovaleric acid and a small amount of propionic acid. The dominant cellular fatty acids (>10 %) of strain ZHW00191T were C16 : 0, C18 : 1 ω9с and C18 : 2ω6,9с. Its polar lipid profile comprised diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and ten unidentified glycolipids. Respiratory quinones were not detected. The cell-wall peptidoglycan contained meso-2,6-diaminopimelic acid, and the whole-cell sugars were ribose and glucose. The genomic DNA G+C content was 32.8 mol%. Analysis of the 16S rRNA gene sequence indicated that ZHW00191T was most closely related to Clostridium hiranonis TO-931T (95.3 % similarity). Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) analyses with closely related reference strains indicated that reassociation values were both well below the thresholds of 95-96% and 70 % for species delineation, respectively. Based on phenotypic, chemotaxonomic and genetic studies, a novel genus, Peptacetobacter gen. nov., is proposed. The novel isolate ZHW00191T (=JCM 33482T=GDMCC 1.1530T) is proposed as the type strain of the type species Peptacetobacter hominis gen. nov., sp. nov. of the proposed new genus. Furthermore, it is proposed that Clostridium hiranonis be transferred to this novel genus, as Peptacetobacter hiranonis comb. nov.


Assuntos
Clostridium/classificação , Fezes/microbiologia , Bacilos Gram-Positivos Formadores de Endosporo/classificação , Filogenia , Adulto , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Bacilos Gram-Positivos Formadores de Endosporo/isolamento & purificação , Humanos , Masculino , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Med Microecol ; 4: 100015, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38620224

RESUMO

Objective: The pandemic 2019 Coronavirus disease (COVID-19) is the greatest concern globally. Here we analyzed the epidemiological features of China, South Korea, Italy and Spain to find out the relationship of major public health events and epidemiological curves. Study design: In this study we described and analyzed the epidemiological characteristics of COVID-19 in and outside China. We used GAM to generate the epidemiological curves and simulated infection curves with reported incubation period. Results: The epidemiological curves derived from the GAM suggested that the infection curve can reflect the public health measurements sensitively. Under the massive actions token in China, the infection curve flattened at 23rd of January. While surprisingly, even before Wuhan lockdown and first level response of public emergency in Guangdong and Shanghai, those infection curve came to the reflection point both at 21st of January, which indicated the mask wearing by the public before 21st Jan were the key measure to cut off the transmission. In the countries outside China, infection curves also changed in response to measures, but its rate of decline was much smaller than the curve of China's. Conclusion: The present analysis comparing the epidemiological curves in China, South Korea, Italy and Spain supports the importance of mask wearing by the public. Analysis of the infection curve helped to clarify the impact of important public health events, evaluate the efficiencies of prevention measures, and showed wearing masks in public resulted in significantly reduced daily infected cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA