Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Res ; 84(16): 2588-2606, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861362

RESUMO

The efficacy of immunotherapy in patients with prostate cancer is limited due to the "cold" tumor microenvironment and the paucity of neoantigens. The STING-TBK1-IRF3 signaling axis is involved in innate immunity and has been increasingly recognized as a candidate target for cancer immunotherapy. Here, we found that treatment with CDK4/6 inhibitors stimulates the STING pathway and enhances the antitumor effect of STING agonists in prostate cancer. Mechanistically, CDK4/6 phosphorylated TBK1 at S527 to inactivate the STING signaling pathway independent of RB1 in prostate cancer cells. CDK4/6-mediated phosphorylation of RB1 at S249/T252 also induced the interaction of RB1 with TBK1 to diminish the phosphorylation of TBK1 at S172, which suppressed STING pathway activation. Overall, this study showed that CDK4/6 suppresses the STING pathway through RB1-dependent and RB1-independent pathways, indicating that CDK4/6 inhibition could be a potential strategy to overcome immunosuppression in prostate cancer. Significance: Inhibiting CDK4/6 activates STING-TBK1-IRF3 signaling in prostate cancer by regulating TBK1 phosphorylation, suggesting that the combination of CDK4/6 inhibitors and STING agonists could be an effective approach to stimulate innate immunity.


Assuntos
Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Proteínas de Membrana , Neoplasias da Próstata , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Animais , Camundongos , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Linhagem Celular Tumoral , Fator Regulador 3 de Interferon/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Microambiente Tumoral/efeitos dos fármacos
2.
Cell Death Differ ; 31(5): 592-604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514847

RESUMO

RB transcriptional corepressor 1 (RB) deletion is the most important genomic factor associated with the prognosis of castration-resistant prostate cancer (CRPC) patients receiving androgen receptor (AR) signaling inhibitor therapy. Loss of RB could support prostate cancer cell growth in a hormone-independent manner, but the underlying mechanism by which RB regulates tumor progression extends far beyond the cell cycle pathway. A previous study indicated that RB inactivates AKT signaling but has no effect on mTOR signaling in cancer cells. Here, we found that the S249/T252 site in RB is key to regulating the transcriptional activity of the tumor-promoting factor TRIM24 in CRPC, as identified through FXXXV mapping. The RB/TRIM24 complex functions through DUSP2, which serves as an intermediate bridge, to activate the mTOR pathway and promote prostate cancer progression. Accordingly, we designed RB-linker-proteolysis-targeting chimera (PROTAC) molecules, which decreased TRIM24 protein levels and inactivated the mTOR signaling pathway, thereby inhibiting prostate cancer. Therefore, this study not only elucidates the novel function of RB but also provides a theoretical basis for the development of new drugs for treating prostate cancer.


Assuntos
Proteína do Retinoblastoma , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Humanos , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Proteína do Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatase 2 de Especificidade Dupla/metabolismo
3.
Adv Sci (Weinh) ; 10(36): e2302368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949681

RESUMO

The development of castration-resistant prostate cancer (CRPC) is a significant factor that reduces life expectancy among patients with prostate cancer. Previously, it is reported that CDK4/6 inhibitors can overcome the resistance of CRPC to BET inhibitors by destabilizing BRD4, suggesting that the combination of CDK4/6 inhibitors and BET inhibitors is a promising approach for treating CRPC. In this study, candidates that affect the combined antitumor effect of CDK4/6 inhibitors and BET inhibitors on CRPC is aimed to examine. The data demonstrates that CBX3 is abnormally upregulated in CDK4/6 inhibitors-resistant cells. CBX3 is almost positively correlated with the cell cycle in multiple malignancies and is downregulated by BET inhibitors. Mechanistically, it is showed that CBX3 is transcriptionally upregulated by BRD4 in CRPC cells. Moreover, it is demonstrated that CBX3 modulated the sensitivity of CRPC to CDK4/6 inhibitors by binding with RB1 to release E2F1. Furthermore, it is revealed that PLK1 phosphorylated CBX3 to enhance the interaction between RB1 and CBX3, and desensitize CRPC cells to CDK4/6 inhibitors. Given that BRD4 regulates CBX3 expression and PLK1 affects the binding between RB1 and CBX3, it is proposed that a dual BRD4/PLK1 inhibitor can increase the sensitivity of CRPC cells to CDK4/6 inhibitors partially through CBX3.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/uso terapêutico , Proteínas que Contêm Bromodomínio , Quinase 4 Dependente de Ciclina/uso terapêutico , Proteínas Cromossômicas não Histona/uso terapêutico
4.
Pathol Res Pract ; 238: 154104, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36095918

RESUMO

Aberrant expression of Neuromedin B (NMB) is associated with the malignant progression of cancer, such as breast cancer, lung cancer and glioma. However, the role of NMB in cervical cancer remains unclear. The present study found that NMB and its receptor NMBR are aberrantly expressed in cervical cancer. NMB activates ERK1/2 and NF-κB signaling pathways, which promote the proliferation of cervical cancer cells and increase the expression of tumor necrosis factor α (TNF-α). The downregulation of NMBR by the specific inhibitor, PD168368, abrogates proliferation and promotes apoptosis of cervical cancer cells. In addition, the NMB/NMBR signaling axis mediates the promoting effect of cancer-associated adipocytes on cervical cancer progression. These findings demonstrate the potential role of NMB/NMBR-regulated ERK1/2 and p65 signaling pathway in cervical cancer progression, which provide new opportunities to diagnose and treat cervical cancer.

5.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740622

RESUMO

Cachexia is a chronic metabolic syndrome that is characterized by sustained weight and muscle mass loss and anorexia. Cachexia can be secondary to a variety of diseases and affects the prognosis of patients significantly. The increase in inflammatory cytokines in plasma is deeply related to the occurrence of cachexia. As a member of the IL-6 cytokine family, leukemia inhibitory factor (LIF) exerts multiple biological functions. LIF is over-expressed in the cancer cells and stromal cells of various tumors, promoting the malignant development of tumors via the autocrine and paracrine systems. Intriguingly, increasing studies have confirmed that LIF contributes to the progression of cachexia, especially in patients with metastatic tumors. This review combines all of the evidence to summarize the mechanism of LIF-induced cachexia from the following four aspects: (i) LIF and cancer-associated cachexia, (ii) LIF and alterations of adipose tissue in cachexia, (iii) LIF and anorexia nervosa in cachexia, and (iv) LIF and muscle atrophy in cachexia. Considering the complex mechanisms in cachexia, we also focus on the interactions between LIF and other key cytokines in cachexia and existing therapeutics targeting LIF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA