Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Microbiol ; 13: 1011342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212844

RESUMO

Emerging evidence supports that the phage-prokaryote interaction drives ecological processes in various environments with different phage life strategies. However, the knowledge of phage-prokaryote interaction in the shrimp culture pond ecosystem (SCPE) is still limited. Here, the viral and prokaryotic community profiles at four culture stages in the intestine of Litopenaeus vannamei and cultural sediment microhabitats of SCPE were explored to elucidate the contribution of phage-prokaryote interaction in modulating microbial communities. The results demonstrated that the most abundant viral families in the shrimp intestine and sediment were Microviridae, Circoviridae, Inoviridae, Siphoviridae, Podoviridae, Myoviridae, Parvoviridae, Herelleviridae, Mimiviridae, and Genomoviridae, while phages dominated the viral community. The dominant prokaryotic genera were Vibrio, Formosa, Aurantisolimonas, and Shewanella in the shrimp intestine, and Formosa, Aurantisolimonas, Algoriphagus, and Flavobacterium in the sediment. The viral and prokaryotic composition of the shrimp intestine and sediment were significantly different at four culture stages, and the phage communities were closely related to the prokaryotic communities. Moreover, the phage-prokaryote interactions can directly or indirectly modulate the microbial community composition and function, including auxiliary metabolic genes and closed toxin genes. The interactional analysis revealed that phages and prokaryotes had diverse coexistence strategies in the shrimp intestine and sediment microhabitats of SCPE. Collectively, our findings characterized the composition of viral communities in the shrimp intestine and cultural sediment and revealed the distinct pattern of phage-prokaryote interaction in modulating microbial community diversity, which expanded our cognization of the phage-prokaryote coexistence strategy in aquatic ecosystems from the microecological perspective and provided theoretical support for microecological prevention and control of shrimp culture health management.

2.
Front Microbiol ; 13: 830777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308336

RESUMO

Sediment nitrogen and sulfur cycles are essential biogeochemical processes that regulate the microbial communities of environmental ecosystems, which have closely linked to environment ecological health. However, their functional couplings in anthropogenic aquaculture sedimentary ecosystems remain poorly understood. Here, we explored the sediment functional genes in shrimp culture pond ecosystems (SCPEs) at different culture stages using the GeoChip gene array approach with 16S amplicon sequencing. Dissimilarity analysis showed that the compositions of both functional genes and bacterial communities differed at different phases of shrimp culture with the appearance of temporal distance decay (p < 0.05). During shrimp culture, the abundances of nitrite and sulfite reduction functional genes decreased (p < 0.05), while those of nitrate and sulfate reduction genes were enriched (p < 0.05) in sediments, implying the enrichment of nitrites and sulfites from microbial metabolism. Meanwhile, nitrogen and sulfur reduction genes were found to be linked with carbon degradation and phosphorous metabolism (p < 0.05). The influence pathways of nutrients were demonstrated by structural equation modeling through environmental factors and the bacterial community on the nitrogen and sulfur reduction functions, indicating that the bacterial community response to environmental factors was facilitated by nutrients, and led to the shifts of functional genes (p < 0.05). These results indicate that sediment nitrogen and sulfur reduction functions in SCPEs were coupled, which are interconnected with the SCPEs bacterial community. Our findings will be helpful for understanding biogeochemical cycles in anthropogenic aquaculture ecosystems and promoting sustainable management of sediment environments through the framework of an ecological perspective.

3.
Front Microbiol ; 12: 772149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795658

RESUMO

From increasing evidence has emerged a tight link among the environment, intestine microbiota, and host health status; moreover, the microbial interaction in different habitats is crucial for ecosystems. However, how the environmental microbial community assembly governs the intestinal microbiota and microbial communities of multiple habitats contribute to the metacommunity remain elusive. Here, we designed two delicate experiments from temporal and spatial scales in a shrimp culture pond ecosystem (SCPE). Of the SCPE metacommunity, the microbial diversity was mainly contributed to by the diversity of-ß IntraHabitats and ß InterHabitats , and water and sediment communities had a large contribution to the shrimp intestine community as shown by SourceTracker and Sloan neutral community model analyses. Also, phylogenetic bin-based null model results show that microbial assembly of three habitats in the SCPE appeared to be largely driven by stochastic processes. These results enrich our understanding of the environment-intestinal microbiota-host health closely linked relationship, making it possible to be the central dogma for an anthropogenic aquaculture ecosystem. Our findings enhance the mechanistic understanding of microbial assembly in the SCPE for further analyzing metacommunities, which has important implications for microbial ecology and animal health.

4.
Appl Microbiol Biotechnol ; 105(12): 5087-5101, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34086119

RESUMO

Microorganisms are an important part of productivity, water quality, and biogeochemical cycles in an aquaculture ecosystems and play a key role in determining the growth and fitness of aquaculture animals. Coculture ecosystems are widely applied with great significance in agricultural production worldwide. The crayfish-rice coculture ecosystem (CRCE) and crayfish-waterweed coculture ecosystem (CWCE) are two high-profile artificial ecosystems for crayfish culture. However, the bacterial communities of the environmental water, sediment, and intestine in the CRCE and CWCE remain elusive. In this study, we investigated the diversity, composition, and function of bacterial communities in water, sediment, and intestine samples from the CRCE to CWCE. The physicochemical factors of water [such as ORP (oxidation-reduction potential), TC (total carbon), TOC (total oxygen carbon), and NO3--N] and sediment [such as TC, TOC, TN (total nitrogen), and TP (total phosphate)] were significantly different in the CRCE and CWCE. The abundances of Proteobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria, Chlorobi, Chloroflexi, and Firmicutes were significantly different in the water bacterial communities of the CRCE and CWCE. The abundance of Vibrio in the crayfish intestine was higher in the CRCE than in the CWCE. The most abundant phyla in the CRCE and CWCE sediment were Proteobacteria and Bacteroidetes. The abundances of genes involved in transporters and ABC transporters were different in water of CRCE and CWCE. The abundances of genes involved in oxidative phosphorylation were significantly higher in the crayfish intestine of the CRCE than in that of the CWCE. Furthermore, the functional genes associated with carbon metabolism were significantly more abundant in the sediment of the CRCE than in that of the CWCE. Spearman correlation analysis and redundancy analysis (RDA) showed that the bacterial communities of the water and sediment in the CRCE and CWCE were correlated with environmental factors (pH, total carbon (TC), total oxygen carbon (TOC), total nitrogen (TN), and total phosphorus (TP)). Our findings showed that the composition, diversity and function of the bacterial communities were distinct in the environmental water, sediment, and intestine of the CRCE and CWCE crayfish coculture ecosystems due to their different ecological patterns. These results can help guide healthy farming practices and deepen the understanding of bacterial communities in crayfish-plant coculture ecosystems from the perspective of bacterial ecology. KEY POINTS: • The composition of bacterial communities in the environmental water, sediment, and intestine of the CRCE and CWCE were distinct. ̉• The abundances of genes involved in transporters and ABC transporters were different in the water of the CRCE and CWCE. • The bacterial communities of the water and sediment in the CRCE and CWCE were correlated with some environmental factors.


Assuntos
Astacoidea , Ecossistema , Animais , Técnicas de Cocultura , Sedimentos Geológicos , Intestinos , RNA Ribossômico 16S , Água
5.
Appl Microbiol Biotechnol ; 105(12): 5013-5022, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34097120

RESUMO

Sediment environments harbor a repertoire of microorganisms that contribute to animal health and the microecosystem in aquaculture ecosystems, but their community diversity and the potential factors that control it remain unclear. Here, we applied 16S rRNA gene amplicon sequencing to investigate bacterial diversity and assembly mechanisms in the sediments of shrimp cultural ponds at the mesoscale. Our results showed that sediment bacterial communities contained 10,333 operational taxonomic units (OTUs) but had only 34 core OTUs and that the relative abundances of these core OTUs were significantly correlated with the physicochemical properties of the sediments. Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Acidobacteria, Firmicutes, Actinobacteria, Ignavibacteriae, Spirochaetae and Planctomycetes were the ten most abundant bacterial phyla. Notably, some opportunistic pathogens (e.g. Vibrio and Photobacterium) and potential functional microbes (e.g. Nitrospira, Nitrosomonas, Desulfobulbus and Desulfuromusa) were widely distributed in shrimp cultural pond sediments. More importantly, we found that there was a significant negative but weak distance-decay relationship among bacterial communities in shrimp culture pond sediments at the mesoscale, and that the spatial turnover of these bacterial communities appeared to be largely driven by stochastic processes. Additionally, environmental factors, such as pH and total nitrogen, also played important roles in influencing the sediment bacterial structure. Our findings enhance our understanding of microbial ecology in aquatic ecosystems and facilitate sediment microbiota management in aquaculture. KEY POINTS: • Core bacterial taxa in cultural pond sediments contributed to the shrimp health and element cycling. • There was a significant negative distance-decay relationship among bacterial communities in shrimp culture pond sediments at the mesoscale, and its spatial turnover appeared to be largely driven by stochastic processes. • Environmental factors (e.g. pH and total nitrogen) played important roles in influencing bacterial structure in shrimp cultural pond sediments.


Assuntos
Sedimentos Geológicos , Lagoas , Animais , Bactérias/genética , RNA Ribossômico 16S , Processos Estocásticos
6.
Sci Total Environ ; 787: 147594, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33989866

RESUMO

Sediment microbial community plays a crucial role in aquaculture ecosystem. In aquaculture practice, rather than monoculture intensive shrimp (IS) or intensive fish (IF) patterns, polyculture of shrimp and fish (PolySF) pattern leads to a more reliable production. However, knowledge is still limited about the characteristics of sediment microbiota and its potential functions in the PolySF ponds compared to monoculture patterns (IS and IF). Herein, we collected sediment samples from these three patterns in seven cities to evaluate microbial variations among patterns. The highest oxidation reduction potential (ORP), total phosphate (TP) and total organic carbon (TOC) were detected in the PolySF pattern, representing a relatively less anoxic environment, while the highest iron (Fe) was detected in IS pattern. Proteobacteria was the most abundant phylum among three patterns, followed by Bacteroidetes and Chloroflexi. The microbial alpha diversity in the PolySF was higher than those in the IF, but lower than those in the IS. Microbial communities of these three patterns were significantly distinct from each other, and 23 distinguished taxa for each pattern were further characterized. In additional, the relative abundances of genes involved in nitrogen metabolism, fatty acid biosynthesis and carbon fixation pathways were markedly shifted. Moreover, ORP, TOC and Fe were the shaping factors for sediment microbiota, which significantly varied among three patterns. Collectively, these findings demonstrated that sediment microbial communities in the PolySF were distinctive from those in the IS and IF, which enlarged our understanding for the underlying mechanism of advances in the PolySF pattern from ecological perspective.


Assuntos
Microbiota , Lagoas , Animais , Aquicultura , Crustáceos , Sedimentos Geológicos
7.
Front Microbiol ; 11: 589164, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304335

RESUMO

Intestine microbiota is tightly associated with host health status. Increasing studies have focused on assessing how host intestine microbiota is affected by biotic factors but ignored abiotic factors. Here, we aimed to understand the effects of salinity on shrimp intestine microbiota, by comparing the differences of intestine bacterial signatures of shrimp under low-salinity (LS) and high-salinity (HS) culture conditions. Our results found that intestine core bacterial taxa of shrimp under LS and HS culture conditions were different and that under HS contained more opportunistic pathogen species. Notably, compared with LS culture conditions, opportunistic pathogens (e.g., Vibrio species) were enriched in shrimp intestine under HS. Network analysis revealed that shrimp under HS culture conditions exhibited less connected and lower competitive intestine bacterial interspecies interactions compared with LS. In addition, under HS culture conditions, several opportunistic pathogens were identified as keystone species of intestine bacterial network in shrimp. Furthermore, the ecological drift process played a more important role in the intestine bacterial assembly of shrimp under HS culture conditions than that under LS. These above traits regarding the intestine microbiota of shrimp under HS culture conditions might lead to host at a higher risk of disease. Collectively, this work aids our understanding of the effects of salinity on shrimp intestine microbiota and helps for shrimp culture.

8.
AMB Express ; 10(1): 180, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33025112

RESUMO

The Pacific white shrimp, with the largest production in shrimp industry, has suffered from multiple severe viral and bacterial diseases, which calls for a more reliable and environmentally friendly system to promote shrimp culture. The "Aquamimicry system", mimicking the nature of aquatic ecosystems for the well-being of aquatic animals, has effectively increased shrimp production and been adapted in many countries. However, the microbial communities in the shrimp intestine and surrounding environment that act as an essential component in Aquamimicry remain largely unknown. In this study, the microbial composition and diversity alteration in shrimp intestine, surrounding water and sediment at different culture stages were investigated by high throughput sequencing of 16S rRNA gene, obtaining 13,562 operational taxonomic units (OTUs). Results showed that the microbial communities in shrimp intestine and surrounding environment were significantly distinct from each other, and 23 distinguished taxa for each habitat were further characterized. The microbial communities differed significantly at different culture stages, confirmed by a great number of OTUs dramatically altered during the culture period. A small part of these altered OTUs were shared between shrimp intestine and surrounding environment, suggesting that the microbial alteration of intestine was not consistent with that of water and sediment. Regarding the high production of Aquamimicry farm used as a case in this study, the dissimilarity between intestinal and surrounding microbiota might be considered as a potential indicator for healthy status of shrimp farming, which provided hints on the appropriate culture practices to improve shrimp production.

9.
Ecotoxicol Environ Saf ; 199: 110738, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447139

RESUMO

The increasing prevalence of antibiotic resistance genes (ARGs) is a challenge to the health of humans, animals and the environments. Human activities and aquatic environments can increase ARGs. Few studies have focused on the temporal variation of aquatic bacteria with multiple ARGs in aquatic environments affected by human production activity. We studied culturable bacteria (CB) carrying ARGs, including sul1, sul2, floR, strA and gyrA in the shrimp hepatopancreas (HP) and in pond water during shrimp culture. The relative abundance of ARGs carried by CB in HP was higher than that in water (P < 0.05). However, CB carrying ARGs generally varied in random pattern. The correlation of sul2 abundance was significantly positive in HP, while that of strA abundance was significantly negative in water (P < 0.05) during shrimp culture. Among all of the CB, 33.59% carried multiple ARGs. Temporal distance-decay analysis indicated that CB carrying ARGs in water were more resistant to the effects of human activity. CB carrying ARGs varied temporally in HP and pond water during shrimp culture. These results demonstrate that multiple ARGs are carried by CB, and these varied with the phase of aquatic culture.


Assuntos
Crustáceos/microbiologia , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental/métodos , Genes Bacterianos , Hepatopâncreas/microbiologia , Lagoas/microbiologia , Animais , Aquicultura , Bactérias/genética , Bactérias/isolamento & purificação , China , Crustáceos/crescimento & desenvolvimento , Humanos , Alimentos Marinhos , Microbiologia da Água
10.
Microbiome ; 8(1): 32, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156316

RESUMO

BACKGROUND: Recently, increasing evidence supports that some complex diseases are not attributed to a given pathogen, but dysbiosis in the host intestinal microbiota (IM). The full intestinal ecosystem alterations, rather than a single pathogen, are associated with white feces syndrome (WFS), a globally severe non-infectious shrimp disease, while no experimental evidence to explore the causality. Herein, we conducted comprehensive metagenomic and metabolomic analysis, and intestinal microbiota transplantation (IMT) to investigate the causal relationship between IM dysbiosis and WFS. RESULTS: Compared to the Control shrimp, we found dramatically decreased microbial richness and diversity in WFS shrimp. Ten genera, such as Vibrio, Candidatus Bacilloplasma, Photobacterium, and Aeromonas, were overrepresented in WFS, whereas 11 genera, including Shewanella, Chitinibacter, and Rhodobacter were enriched in control. The divergent changes in these populations might contribute the observation that a decline of pathways conferring lipoic acid metabolism and mineral absorption in WFS. Meanwhile, some sorts of metabolites, especially lipids and organic acids, were found to be related to the IM alteration in WFS. Integrated with multiomics and IMT, we demonstrated that significant alterations in the community composition, functional potentials, and metabolites of IM were closely linked to shrimp WFS. The distinguished metabolites which were attributed to the IM dysbiosis were validated by feed-supplementary challenge. Both homogenous selection and heterogeneous selection process were less pronounced in WFS microbial community assembly. Notably, IMT shrimp from WFS donors eventually developed WFS clinical signs, while the dysbiotic IM can be recharacterized in recipient shrimp. CONCLUSIONS: Collectively, our findings offer solid evidence of the causality between IM dysbiosis and shrimp WFS, which exemplify the 'microecological Koch's postulates' (an intestinal microbiota dysbiosis, a disease) in disease etiology, and inspire our cogitation on etiology from an ecological perspective. Video abstract.


Assuntos
Disbiose/microbiologia , Transplante de Microbiota Fecal/veterinária , Microbioma Gastrointestinal , Intestinos/microbiologia , Penaeidae/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fezes/microbiologia , Variação Genética , Intestinos/fisiopatologia
11.
Front Genet ; 11: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133029

RESUMO

The pacific white shrimp, Litopenaeus vannamei, with the largest shrimp industry production in the world, is currently threatened by a severe disease, white feces syndrome (WFS), which cause devastating losses globally, while its causal agents remain largely unknown. Herein, compared to the Control shrimp by metagenomic analysis, we firstly investigated that the altered functions of intestinal microbial community in WFS shrimp were the enrichment of bacterial chemotaxis and flagellar assembly pathways, hinting at a potential role of pathogenic bacteria for growth and development, which might be related to WFS occurrence. Single-molecule real-time (SMRT) sequencing was to further identify the gene structure and gene regulation for more clues in WFS aetiology. Totally 50,049 high quality transcripts were obtained, capturing 39,995 previously mapped and 10,054 newly detected transcripts, which were annotated to 30,554 genes. A total of 158 differentially expressed genes (DEGs) were characterized in WFS shrimp. These DEGs were strongly associated with various immune related genes that regulated the expression of multiple antimicrobial peptides (e.g., antilipopolysaccharide factors, penaeidins, and crustin), which were further experimentally validated using quantitative PCR on transcript level. Collectively, multigene biomarkers were identified to be closely associated with WFS, especially those functional alterations in microbial community and the upregulated immune related gene with antibacterial activities. Our finding not only inspired our cogitation on WFS aetiology from both microbial and host immune response perspectives with combined metagenomic and full-length transcriptome sequencing, but also provided valuable information for enhancing shrimp aquaculture.

12.
J Environ Sci (China) ; 80: 248-256, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952342

RESUMO

Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.


Assuntos
Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental/métodos , Metagenoma/fisiologia , Microbiologia da Água , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos
13.
Appl Microbiol Biotechnol ; 103(7): 3111-3122, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30815709

RESUMO

The intestinal microbiota plays crucial roles in host health. The Pacific white shrimp is one of the most profitable aquaculture species in the world. Antibiotic supplement in feed is an optional practice to treat shrimp bacterial diseases. However, little is known about antibiotic effects on intestinal microbiota in pacific white shrimp. Here, shrimps were given feed supplemented with ciprofloxacin (Cip) (40 and 80 mg kg-1) and sulfonamide (Sul) (200 and 400 mg kg-1) to investigate the microbial community by targeting the V4 region of 16S rRNA genes. Within 4 days after feeding with normal feed and with antibiotics, antibiotic concentrations of Cip and Sul groups in the intestine dropped sharply. Significantly, increased abundance of antibiotic resistance genes (ARGs) of ciprofloxacin (qnrB, qnrD, and qnrS) and sulfonamide (sul1, sul2, and sul3) was observed in Cip and Sul groups (P < 0.05). A total of 3191 operational taxonomic units (OTUs) were obtained and 41 phyla were identified from 63 samples in shrimp intestine. The numbers of OTUs and Shannon index decreased rapidly at day 1 (the first day after feeding with antibiotics) and increased at day 3 (the third day after feeding with antibiotics). The relative abundance of dominant phyla and genera in Cip and Sul groups were significantly different from that in the control group (Ctrl). Furthermore, functional potentials that were related to amino acid metabolism, carbohydrate metabolism, and cellular processes and signaling varied significantly in Cip and Sul groups. These results point to an antibiotic-induced shift in shrimp intestinal microbiota, which highlights the importance of considering the microbiota in shrimp health management.


Assuntos
Ração Animal , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Penaeidae/efeitos dos fármacos , Penaeidae/microbiologia , Animais , Antibacterianos/efeitos adversos , Aquicultura , Bactérias/classificação , Bactérias/efeitos dos fármacos , Ciprofloxacina/efeitos adversos , Ciprofloxacina/farmacologia , Resistência Microbiana a Medicamentos , Monitoramento Ambiental , Genes Bacterianos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , RNA Ribossômico 16S/genética , Alimentos Marinhos , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacologia
14.
Appl Microbiol Biotechnol ; 102(8): 3701-3709, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516144

RESUMO

Increasing evidence suggests that the intestinal microbiota is closely correlated with the host's health status. Thus, a serious disturbance that disrupts the stability of the intestinal microecosystem could cause host disease. Shrimps are one of the most important products among fishery trading commodities. However, digestive system diseases, such as white feces syndrome (WFS), frequently occur in shrimp culture and have led to enormous economic losses across the world. The WFS occurrences are unclear. Here, we compared intestinal bacterial communities of WFS shrimp and healthy shrimp. Intestinal bacterial communities of WFS shrimp exhibited less diversity but were more heterogeneous than those of healthy shrimp. The intestinal bacterial communities were significantly different between WFS shrimp and healthy shrimp; compared with healthy shrimp, in WFS shrimp, Candidatus Bacilloplasma and Phascolarctobacterium were overrepresented, whereas Paracoccus and Lactococcus were underrepresented. PICRUSt functional predictions indicated that the relative abundances of genes involved in energy metabolism and genetic information processing were significantly greater in WFS shrimp. Collectively, we found that the composition and predicted functions of the intestinal bacterial community were markedly shifted by WFS. Significant increases in Candidatus Bacilloplasma and Phascolarctobacterium and decreases in Paracoccus and Lactococcus may contribute to WFS in shrimp.


Assuntos
Biodiversidade , Microbioma Gastrointestinal/fisiologia , Penaeidae/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Intestinos/microbiologia , RNA Ribossômico 16S/genética
15.
Front Microbiol ; 8: 2359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238333

RESUMO

The effects of environmental factors on water microbial communities have been extensively studied, but little is known about the effects in shrimp cultural enclosure ecosystems. We analyzed 16S rRNA gene amplicons to determine the principal environmental factors that shape the structure and function of microbial communities in shrimp cultural enclosure ecosystems from Guangdong and Hainan provinces, in China. High quality sequences were clustered into operational taxonomic units (OTUs) at the 97% similarity level, generating 659-1,835 OTUs per sample. The 10 most abundant phyla were Proteobacteria, Bacteroidetes, Cyanobacteria, Planctomycetes, Actinobacteria, Verrucomicrobia, Firmicutes, Chlorobi, Chloroflexi, and Chlamydiae. The results of canonical correspondence analyses (CCA) indicated that salinity, total phosphate (TP), total nitrogen (TN), temperature, and pH were the most important factors shaping microbial community structure. Differences in microbial community structure between high and low salinity samples were explained by changes in the relative abundances of some OTUs (e.g., OTU5, OTU19, OTU21, OTU39, and OTU71). Moreover, the contribution of spatial distribution to the microbial community assembly was investigated via aggregated boosted tree (ABT) analyses, and the results indicated spatial isolation was not a major factor affecting the phylogenetic diversity and phylotypes of water microbial communities. Furthermore, we predicted water microbial community functional profiling using the PICRUSt program and principal component analyses (PCA) suggested that salinity was a major contributor to the structure and function of the microbial communities. Collectively, these results showed that environmental factors influenced the structure and function of water microbial communities, while salinity was the principal environmental factor instead of temperature, TP, TN, and pH in shrimp cultural enclosure ecosystems.

16.
PeerJ ; 5: e3986, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29134144

RESUMO

Intestinal microbiota is an integral component of the host and plays important roles in host health. The pacific white shrimp is one of the most profitable aquaculture species commercialized in the world market with the largest production in shrimp consumption. Many studies revealed that the intestinal microbiota shifted significantly during host development in other aquaculture animals. In the present study, 22 shrimp samples were collected every 15 days from larval stage (15 day post-hatching, dph) to adult stage (75 dph) to investigate the intestinal microbiota at different culture stages by targeting the V4 region of 16S rRNA gene, and the microbial function prediction was conducted by PICRUSt. The operational taxonomic unit (OTU) was assigned at 97% sequence identity. A total of 2,496 OTUs were obtained, ranging from 585 to 1,239 in each sample. Forty-three phyla were identified due to the classifiable sequence. The most abundant phyla were Proteobacteria, Cyanobacteria, Tenericutes, Fusobacteria, Firmicutes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Actinobacteria and Chloroflexi. OTUs belonged to 289 genera and the most abundant genera were Candidatus_Xiphinematobacter, Propionigenium, Synechococcus, Shewanella and Cetobacterium. Fifty-nine OTUs were detected in all samples, which were considered as the major microbes in intestine of shrimp. The intestinal microbiota was enriched with functional potentials that were related to transporters, ABC transporters, DNA repair and recombination proteins, two component system, secretion system, bacterial motility proteins, purine metabolism and ribosome. All the results showed that the intestinal microbial composition, diversity and functions varied significantly at different culture stages, which indicated that shrimp intestinal microbiota depended on culture stages. These findings provided new evidence on intestinal microorganism microecology and greatly enhanced our understanding of stage-specific community in the shrimp intestinal ecosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA