Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Neurodegener ; 19(1): 68, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385222

RESUMO

BACKGROUND: Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aß)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS: The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aß40, and Aß42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aß pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS: NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aß pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aß-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aß PET-dependent yearly increases in Aß-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS: Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.


Assuntos
Doença de Alzheimer , Biomarcadores , Doenças Neuroinflamatórias , Proteômica , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico , Humanos , Biomarcadores/sangue , Masculino , Feminino , Proteômica/métodos , Idoso , Doenças Neuroinflamatórias/sangue , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Pessoa de Meia-Idade , Proteínas tau/sangue , Proteínas tau/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39448295

RESUMO

OBJECTIVES: We examine the clinical utility of plasma-based detection for Alzheimer's disease (AD) pathophysiology in older adults with mild cognitive impairment (MCI) and whether cognitive screening can inform when to use plasma-based AD tests. METHODS: Seventy-four community-dwelling older adults with MCI had testing with plasma phosphorylated tau (p-tau) 217 and 181, positron emission tomography (PET) imaging for amyloid beta (Aß), and cognitive assessment. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of plasma p-tau. RESULTS: Plasma p-tau217 distinguished MCI participants who had PET imaging evidence of Aß accumulation from those without (AUC of 0.92, specificity of 0.96, and sensitivity of 0.90), outperforming plasma p-tau181 (AUC of 0.76, specificity of 0.87 and sensitivity of 0.59) for the same purpose. Of the 60 MCI participants that were amnestic, 22 were Aß+. The 14 participants that were nonamnestic were all Aß-. CONCLUSIONS: Our findings support the clinical use of plasma p-tau, particularly p-tau217, for patient detection of AD pathophysiology in older adults with amnestic MCI, but not in those who are nonamnestic.

3.
J Environ Manage ; 371: 123001, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39471593

RESUMO

In environmental protection, government and market forces must work together. However, existing literature often separates the two and discusses their roles independently. Therefore, this study incorporates both the market and government into a unified analytical framework. It redefines government force as environmental regulation and market force as allocation efficiency in environmental protection. The study empirically examines the synergistic emission reduction effects of active government and efficient market on air pollution, using data from 272 prefectural-level cities in China from 2003 to 2019. The results show: (1) Both government and market interventions can significantly reduce air pollution levels, and their combination achieves a synergistic emission reduction effect.(2) Within this synergy, government intervention remains dominant, while the market plays a supportive role. (3) Analyzing the heterogeneous effects under different scenarios reveals that collaboration and mutual monitoring between the government and the market can effectively counteract the adverse effects of economic policy uncertainty and corruption on the environment. Furthermore, when a single entity undertakes environmental protection, it may encounter issues of diminishing effectiveness over time. However, the synergistic effects of government and market cooperation can mitigate these challenges. (4) The synergy exhibits a threshold effect based on the varying strengths of government and market forces. (5) Public participation enhances the synergistic emission reduction effect of government and market, acting as a vital complement to their environmental protection efforts. This study provides new empirical evidence on the synergistic effect of current environmental protection measures in improving air pollution control.

4.
Res Sq ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39281858

RESUMO

High-performance, resource-efficient methods for plasma amyloid-ß (Aß) quantification in Alzheimer's disease are lacking; existing mass spectrometry-based assays are resource- and time-intensive. We developed a streamlined mass spectrometry method with a single immunoprecipitation step, an optimized buffer system, and ≤75% less antibody requirement. Analytical and clinical performances were compared with an in-house reproduced version of a well-known two-step assay. The streamlined assay showed high dilution linearity (r2>0.99) and precision (< 10% coefficient of variation), low quantification limits (Aß1-40: 12.5 pg/ml; Aß1-42: 3.125 pg/ml), and high signal correlation (r2~0.7) with the two-step immunoprecipitation assay. The novel single-step assay showed more efficient recovery of Aß peptides via fewer immunoprecipitation steps, with significantly higher signal-to-noise ratios, even at plasma sample volumes down to 50 pl. Both assays had equivalent performances in distinguishing non-elevated vs. elevated brain Aß-PET individuals. The new method enables simplified yet robust evaluation of plasma Aß biomarkers in Alzheimer's disease.

5.
ACS Nano ; 18(37): 25795-25812, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39226614

RESUMO

The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO2-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO2 nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both in vitro and in vivo. This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.


Assuntos
Neoplasias da Mama , Ferroptose , Ferro , Dióxido de Silício , Dióxido de Silício/química , Ferroptose/efeitos dos fármacos , Humanos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos , Ferro/química , Ferro/metabolismo , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais , Nanopartículas/química
6.
Small ; : e2406448, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279302

RESUMO

Designing nano-electrocatalysts rich in surface defects is critical to improve their catalytic performance. However, prevailing synthesis techniques rely heavily on complex procedures that compromise defect extensiveness and uniformity, casting a high demand for methods capable of synthesizing large-scale crystalline defects. An innovative design strategy is herein proposed that induces ample strain/dislocation defects during the growth of palladium (Pd), which is well-known as a good oxygen reduction reaction (ORR) catalyst. The controlled defect engineering on Pd core is achieved by the tensile stress exerted from an intentionally applied Fe3O4 skin layer during synthesis, which changes the surface free energy of Pd to stabilize the defect presence. With such large-scale crystalline defects, this Pd catalyst exhibits significantly higher ORR activity than commercial Pt/C, enabling its promising future in zinc-air battery catalysis. Additionally, the protective Fe3O4 skin covering the catalyst also enhances its catalytic stability. Theoretical calculations show that the superior catalytic property of such defect-engineered Pd is associated with the correspondingly modified adsorption energy of *O intermediates onto its surface, which further improves the reaction rate and thus boosts ORR kinetics. Findings here are expected to provide a paradigm for designing efficient and stable metal catalysts with plentiful large-scale strain defects.

7.
Adv Sci (Weinh) ; 11(38): e2405826, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39120559

RESUMO

Ferroptosis, an iron- and reactive oxygen species (ROS)-dependent cell death, holds significant promise for tumor therapy due to its ability to induce lipid peroxidation (LPO) and trigger antitumor immune responses. However, elevated cholesterol levels in cancer cells impede ferroptosis and compromise immune function. Here, a novel nanozyme, Fe-MOF/CP, composed of iron metal-organic framework (Fe-MOF) nanoparticles loaded with cholesterol oxidase and PEGylation for integrated ferroptosis and immunotherapy is introduced. Fe-MOF/CP depletes cholesterol and generates hydrogen peroxide, enhancing ROS levels and inducing LPO, thereby promoting ferroptosis. This process disrupts lipid raft integrity and downregulates glutathione peroxidase 4 and ferroptosis suppressor protein 1, further facilitating ferroptosis. Concurrently, Fe-MOF/CP augments immunogenic cell death, reduces programmed death-ligand 1 expression, and revitalizes exhausted CD8+ T cells. In vivo studies demonstrate significant therapeutic efficacy in abscopal, metastasis, and recurrent tumor models, highlighting the robust antitumor immune responses elicited by Fe-MOF/CP. This study underscores the potential of Fe-MOF/CP as a multifunctional therapeutic agent that combines ferroptosis and immunotherapy, offering a promising strategy for effective and durable cancer treatment.


Assuntos
Colesterol , Modelos Animais de Doenças , Ferroptose , Imunoterapia , Ferroptose/efeitos dos fármacos , Animais , Imunoterapia/métodos , Camundongos , Colesterol/metabolismo , Nanopartículas , Estruturas Metalorgânicas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral
8.
J Nanobiotechnology ; 22(1): 474, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123234

RESUMO

The activation of ferroptosis presents a versatile strategy for enhancing the antitumor immune responses in cancer therapy. However, developing ferroptosis inducers that combine high biocompatibility and therapeutic efficiency remains challenging. In this study, we propose a novel approach using biological nanoparticles derived from outer membrane vesicles (OMVs) of Escherichia coli for tumor treatment, aiming to activate ferroptosis and stimulate the immune responses. Specifically, we functionalize the OMVs by anchoring them with ferrous ions via electrostatic interactions and loading them with the STING agonist-4, followed by tumor-targeting DSPE-PEG-FA decoration, henceforth referred to as OMV/SaFeFA. The anchoring of ferrous ions endows the OMVs with peroxidase-like activity, capable of inducing cellular lipid peroxidation by catalyzing H2O2 to •OH. Furthermore, OMV/SaFeFA exhibits pH-responsive release of ferrous ions and the agonist, along with tumor-targeting capabilities, enabling tumor-specific therapy while minimizing side effects. Notably, the concurrent activation of the STING pathway and ferroptosis elicits robust antitumor responses in colon tumor-bearing mouse models, leading to exceptional therapeutic efficacy and prolonged survival. Importantly, no acute toxicity was observed in mice receiving OMV/SaFeFA treatments, underscoring its potential for future tumor therapy and clinical translation.


Assuntos
Ferroptose , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Membrana Externa Bacteriana , Escherichia coli , Humanos , Nanopartículas/química , Feminino , Camundongos Endogâmicos BALB C , Peroxidação de Lipídeos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias do Colo/tratamento farmacológico , Íons
9.
J Sci Food Agric ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189852

RESUMO

BACKGROUND: This study explored the mechanism of irrigation and nitrogen (N) coupling on spring maize yield and soil greenhouse gas (GHG) emissions, with the objective of achieving water saving, high yield and emission reduction. Field experiments were conducted to analyze the effects of multiple irrigation and N management strategies on GHG emissions and to determine the optimal balance between GHG, water conservation and grain yield. The experiments were conducted on spring maize with three irrigation levels (low, IL; medium, IM; and high, IH) and 4 N application levels (N40, N80, N120 and N160 kg N ha-1). RESULTS: The IL treatment exhibited the lowest N2O and CO2 emission fluxes and the lowest CH4 uptake fluxes. The N40 treatment exhibited the lowest N2O and CO2 emission fluxes and the highest CH4 uptake flux. Significant positive correlations were observed among N2O and CO2 emission fluxes, CH4 uptake fluxes, and soil moisture and inorganic N content. Maize yield initially increased and then decreased with rising levels of irrigation and N management. By employing the TOPSIS method to assess yield and greenhouse effects, we identified the IMN120 treatment as optimal given that this treatment achieved the highest yield (14 686.26 kg ha-1) and water use efficiency (3.51 kg m-3) while maintaining relatively low global warming potential (573.30 kg CO2 eq ∙ ha-1) and GHG intensity (0.0390 kg CO2 eq ∙ kg-1). CONCLUSION: Irrigation optimization and N management are key to reducing GHG emissions, enhancing yield, and promoting both the sustainable development of agriculture and environmental protection. © 2024 Society of Chemical Industry.

10.
medRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38947065

RESUMO

Background: Blood-based biomarkers are gaining grounds for Alzheimer's disease (AD) detection. However, two key obstacles need to be addressed: the lack of methods for multi-analyte assessments and the need for markers of neuroinflammation, vascular, and synaptic dysfunction. Here, we evaluated a novel multi-analyte biomarker platform, NULISAseq CNS disease panel, a multiplex NUcleic acid-linked Immuno-Sandwich Assay (NULISA) targeting ~120 analytes, including classical AD biomarkers and key proteins defining various disease hallmarks. Methods: The NULISAseq panel was applied to 176 plasma samples from the MYHAT-NI cohort of cognitively normal participants from an economically underserved region in Western Pennsylvania. Classical AD biomarkers, including p-tau181 p-tau217, p-tau231, GFAP, NEFL, Aß40, and Aß42, were also measured using Single Molecule Array (Simoa). Amyloid pathology, tau pathology, and neurodegeneration were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and MRI, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA biomarkers and AD pathologies. Spearman correlations were used to compare NULISA and Simoa. Results: NULISA concurrently measured 116 plasma biomarkers with good technical performance, and good correlation with Simoa measures. Cross-sectionally, p-tau217 was the top hit to identify Aß pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aß-PET+ participants, including TIMP3, which regulates brain Aß production, the neurotrophic factor BDNF, the energy metabolism marker MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aß PET-dependent yearly increases in Aß-PET+ participants. Markers with tau PET-dependent longitudinal changes included the microglial activation marker CHIT1, the reactive astrogliosis marker CHI3L1, the synaptic protein NPTX1, and the cerebrovascular markers PGF, PDGFRB, and VEFGA; all previously linked to AD but only reliably measured in cerebrospinal fluid. SQSTM1, the autophagosome cargo protein, exhibited a significant association with neurodegeneration status after adjusting age, sex, and APOE ε4 genotype. Conclusions: Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.

11.
J Cell Mol Med ; 28(12): e18486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923380

RESUMO

Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.


Assuntos
Antioxidantes , Folículo Piloso , Estresse Oxidativo , Transdução de Sinais , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Cabelo/efeitos dos fármacos , Alopecia/metabolismo , Alopecia/tratamento farmacológico , Produtos Biológicos/farmacologia
12.
Adv Mater ; 36(33): e2405751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934354

RESUMO

To meet the ever-increasing demand for high-energy lithium-ion batteries (LIBs), it is imperative to develop next-generation anode materials. Compared to conventional carbon-based anodes, Si-based materials are promising due to their high theoretical capacity and reasonable cost. SiOx, as a Si-derivative anode candidate, is particularly encouraging for its durable cycling life, the practical application of which is, however, severely hindered by low initial Coulombic efficiency (ICE) that leads to continuous lithium consumption. What is worse, low ICE also easily triggers a terrible chain reaction causing bad cycling stability. To further develop SiOx anode, researchers have obtained in-depth understandings regarding its working/failing mechanisms so as to further propose effective remedies for low ICE mitigation. In this sense, herein recent studies investigating the possible causes that fundamentally result in low ICE of SiOx, based on which a variety of solutions addressing the low ICE issue are discussed and summarized, are timely summarized. This perspective provides valuable insights into the rational design of high ICE SiOx anodes and paves the way toward industrial application of SiOx as the next generation LIB anode.

13.
J Neurochem ; 168(9): 2736-2750, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38814273

RESUMO

The reliability of plasma biomarkers of Alzheimer's disease (AD) can be compromised by protease-induced degradation. This can limit the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). In this study, we conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 h. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0 h or 24 h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA and P100 tubes, followed by storage at RT for 0 h or 24 h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improves the stability of Aß42 and Aß40 across all approaches. However, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß42/40 ratio for the IP-MS assay. These findings have crucial implications for preanalytical procedures, particularly in resource-limited settings.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Coleta de Amostras Sanguíneas , Inibidores de Proteases , Doença de Alzheimer/sangue , Humanos , Coleta de Amostras Sanguíneas/métodos , Biomarcadores/sangue , Inibidores de Proteases/farmacologia , Masculino , Idoso , Feminino , Peptídeos beta-Amiloides/sangue , Idoso de 80 Anos ou mais , Ácido Edético/farmacologia , Proteínas tau/sangue , Fragmentos de Peptídeos/sangue
14.
Mol Neurodegener ; 19(1): 40, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750570

RESUMO

Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aß]40, Aß42, Aß42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.


Assuntos
Doença de Alzheimer , Bancos de Espécimes Biológicos , Biomarcadores , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Bancos de Espécimes Biológicos/normas , Projetos de Pesquisa/normas , Peptídeos beta-Amiloides/sangue , Manejo de Espécimes/normas , Manejo de Espécimes/métodos , Proteínas tau/sangue
15.
J Nanobiotechnology ; 22(1): 228, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715049

RESUMO

Development of ferroptosis-inducible nanoplatforms with high efficiency and specificity is highly needed and challenging in tumor ferrotherapy. Here, we demonstrate highly effective tumor ferrotherapy using iron (II)-based metal-organic framework (FessMOF) nanoparticles, assembled from disulfide bonds and ferrous ions. The as-prepared FessMOF nanoparticles exhibit peroxidase-like activity and pH/glutathione-dependent degradability, which enables tumor-responsive catalytic therapy and glutathione depletion by the thiol/disulfide exchange to suppress glutathione peroxidase 4, respectively. Upon PEGylation and Actinomycin D (ActD) loading, the resulting FessMOF/ActD-PEG nanoplatform induces marked DNA damage and lipid peroxidation. Concurrently, we found that ActD can inhibit Xc- system and elicit ferritinophagy, which further boosts the ferrotherapeutic efficacy of the FessMOF/ActD-PEG. In vivo experiments demonstrate that our fabricated nanoplatform presents excellent biocompatibility and a high tumor inhibition rate of 91.89%.


Assuntos
Dano ao DNA , Ferroptose , Ferro , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Ferroptose/efeitos dos fármacos , Animais , Humanos , Camundongos , Dano ao DNA/efeitos dos fármacos , Ferro/química , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Feminino
17.
Med Sci Sports Exerc ; 56(9): 1644-1654, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758530

RESUMO

PURPOSE: The purpose of this study is to optimize a dMS-based urinary proteomic technique and evaluate the relationship between urinary proteome content and adaptive changes in bone microarchitecture during BCT. METHODS: Urinary proteomes were analyzed with an optimized dMS technique in two groups of 13 recruits ( N = 26) at the beginning (Pre) and end (Post) of BCT. Matched by age (21 ± 4 yr), sex (16 W), and baseline tibial trabecular bone volume fractions (Tb.BV/TV), these groups were distinguished by the most substantial (High) and minimal (Low) improvements in Tb.BV/TV. Differential protein expression was analyzed with mixed permutation ANOVA and false discovery proportion-based adjustment for multiple comparisons. RESULTS: Tibial Tb.BV/TV increased from pre- to post-BCT in High (3.30 ± 1.64%, P < 0.0001) but not Low (-0.35 ± 1.25%, P = 0.4707). The optimized dMS technique identified 10,431 peptides from 1368 protein groups that represented 165 integrative biological processes. Seventy-four urinary proteins changed from pre- to post-BCT ( P = 0.0019), and neutrophil-mediated immunity was the most prominent ontology. Two proteins (immunoglobulin heavy constant gamma 4 and C-type lectin domain family 4 member G) differed from pre- to post-BCT in High and Low ( P = 0.0006). CONCLUSIONS: The dMS technique can identify more than 1000 urinary proteins. At least 74 proteins are responsive to BCT, and other principally immune system-related proteins show differential expression patterns that coincide with adaptive bone formation.


Assuntos
Biomarcadores , Osso Esponjoso , Militares , Proteômica , Humanos , Masculino , Osso Esponjoso/diagnóstico por imagem , Biomarcadores/urina , Adulto Jovem , Tíbia/metabolismo , Proteoma , Feminino , Adolescente
18.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645048

RESUMO

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase ß (Polß), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polß. Required for Polß foci formation, TRIP12 regulates Polß involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polß affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polß-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

19.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496591

RESUMO

INTRODUCTION: The reliability of plasma Alzheimer's disease (AD) biomarkers can be compromised by protease-induced degradation. This limits the feasibility of conducting plasma biomarker studies in environments that lack the capacity for immediate processing and appropriate storage of blood samples. We hypothesized that blood collection tube supplementation with protease inhibitors can improve the stability of plasma biomarkers at room temperatures (RT). This study conducted a comparative analysis of blood biomarker stability in traditional ethylenediaminetetraacetic acid (EDTA) tubes versus BD™ P100 collection tubes, the latter being coated with a protease inhibitor cocktail. The stability of six plasma AD biomarkers was evaluated over time under RT conditions. METHODS: We evaluated three experimental approaches. In Approach 1, pooled plasma samples underwent storage at RT for up to 96 hours. In Approach 2, plasma samples isolated upfront from whole blood collected into EDTA or P100 tubes were stored at RT for 0h or 24h before biomarker measurements. In Approach 3, whole blood samples were collected into paired EDTA or P100 tubes, followed by storage at RT for 0h or 24h before isolating the plasma for analyses. Biomarkers were measured with Single Molecule Array (Simoa) and immunoprecipitation-mass spectrometry (IP-MS) assays. RESULTS: Both the IP-MS and Simoa methods revealed that the use of P100 tubes significantly improved the stability of Aß42 and Aß40 across all approaches. Additionally, the Aß42/Aß40 ratio levels were significantly stabilized only in the IP-MS assay in Approach 3. No significant differences were observed in the levels of plasma p-tau181, GFAP, and NfL for samples collected using either tube type in any of the approaches. CONCLUSION: Supplementation of blood collection tubes with protease inhibitors could reduce the protease-induced degradation of plasma Aß42 and Aß40, and the Aß ratio for IP-MS assay. This has crucial implications for preanalytical procedures, particularly in resource-limited settings.

20.
Adv Healthc Mater ; 13(18): e2304522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530073

RESUMO

Cuproptosis is dependent on mitochondrial respiration modulation by targeting lipoylated tricarboxylic acid cycle (TCA) cycle proteins, showing great potential in cancer treatment. However, the specific release of copper ions at mitochondrial is highly needed and still a major challenge to trigger cellular cuproptosis. Herein, a metal-organic framework-based nanoplatform (ZCProP) is designed for mitochondrial-targeted and ATP/pH-responsive Cu2+ and prodigiosin release. The released Cu2+ promotes aggregation of lipoylated protein and loss of Fe-S cluster protein, resulting in cell cuproptosis. In the meanwhile, Cu2+ can concert with prodigiosin to induce mitochondrial dysfunction and DNA damage and enhance cell cuproptosis. Furthermore, this nanoplatform has an ability to deplete glutathione, which not only further promotes cuproptosis but also triggers cell ferroptosis by the suppression of glutathione peroxidase 4, an anti-ferroptosis protein. Collectively, the designed ZCProP nanoplatform can responsively release cargos at mitochondrial and realize a conspicuous therapeutic efficacy through a cuproptosis-mediated concerted effect. Along with its excellent biocompatibility, this nanoplatform may provide a novel therapeutic modality paradigm to boost cancer therapeutic strategies based on cuproptosis.


Assuntos
Cobre , Estruturas Metalorgânicas , Mitocôndrias , Cobre/química , Cobre/farmacologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA