Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; : 131201, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39097236

RESUMO

For revealing the influence of temperature on volatile fatty acids (VFAs) generation from primary sludge (PS) during the anaerobic fermentation process facilitated by peroxymonosulfate (PMS), five fermentation groups (15, 25, 35, 45, and 55 °C) were designed. The results indicated that the production of VFAs (5148 mg COD/L) and acetic acid (2019 mg COD/L) reached their peaks at 45 °C. High-throughput sequencing technology disclosed that Firmicutes, Proteobacteria, and Actinobacteria was the dominant phyla, carbohydrate metabolism and membrane transport were the most vigorous at 45 °C. Additionally, higher temperature and PMS exhibit synergistic effects in promoting VFAs accumulation. This study unveiled the mechanism of the effect of the pretreatment of PS with PMS on the VFAs production, which established a theoretical foundation for the production of VFAs.

2.
Environ Res ; 217: 114939, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435490

RESUMO

To obtain high-quality VFAs production from primary sludge, a novel strategy that combined peroxymonosulfate (PMS) pretreatment and alkaline fermentation (i.e., PMS & pH9) was proposed in the study. The results showed that PMS & pH9 was efficient in sludge solubilization and hydrolysis, resulting in a maximal VFAs yield of 401.2 mg COD/g VSS, which was 7.3-, 2.1-, and 8.8-fold higher than the sole PMS, sole pH9, and control, respectively. Acetate comprised 87.6% of VFAs in this integration system. Mechanism investigations revealed that sulfate and free radicals produced by PMS play roles in improving VFAs yield under alkaline conditions. Besides, sulfate also aided in C3∼C5 VFAs converting to acetate under alkaline conditions depending on the increase of incomplete-oxidative sulfate-reducing bacteria (iso-SRB) (i.e., Desulfobulbus and Desulfobotulus). Moreover, the relative abundances of acid-forming characteristic genera (i.e., Proteiniborus, Proteinilcasticum, and Acetoanaerobium) were higher in PMS & pH9.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Fermentação , Esgotos/microbiologia , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA