Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3076-3084, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297538

RESUMO

Compact electron sources have been instrumental in multidiscipline sciences including fundamental physics, oncology treatments, and advanced industries. Of particular interest is the terahertz-driven electron manipulation that holds great promise for an efficient high gradient of multi-GeV/m inside a regular dielectric-lined waveguide (DLW). The recent study relying on terahertz surface waves has demonstrated both high terahertz energy and improved coupling efficiency with the DLW. However, the large energy spread pertaining to the laser-induced electron pulse impedes the practical use of the system. Here, we propose a scheme for extending the idea of surface-wave-driven electron manipulation to mature electron sources such as commercial direct-current and radio-frequency electron guns. By using a simple hollow cylinder tube for electron transmission, we show that the electron energy modulation can reach up to 860 keV, or compress the electron pulse width to 15 fs using a 2.9 mJ single-cycle terahertz pulse. The trafficability of the hollow tube also allows for a cascade of the system, which is expected to pave the way for compact and highly efficient THz-driven electron sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA