Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4408-4414, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567928

RESUMO

Tuning the interfacial Schottky barrier with van der Waals (vdW) contacts is an important solution for two-dimensional (2D) electronics. Here we report that the interlayer dipoles of 2D vdW superlattices (vdWSLs) can be used to engineer vdW contacts to 2D semiconductors. A bipolar WSe2 with Ba6Ta11S28 (BTS) vdW contact was employed to exhibit this strategy. Strong interlayer dipoles can be formed due to charge transfer between the Ba3TaS5 and TaS2 layers. Mechanical exfoliation breaks the superlattice and produces two distinguished surfaces with TaS2 and Ba3TaS5 terminations. The surfaces thus have opposite surface dipoles and consequently different work functions. Therefore, all the devices fall into two categories in accordance with the rectifying direction, which were verified by electrical measurements and scanning photocurrent microscopy. The growing vdWSL family along with the addition surface dipoles enables prospective vdW contact designs and have practical application in nanoelectronics and nano optoelectronics.

2.
Nat Commun ; 12(1): 2649, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976184

RESUMO

Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA