Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Med Chem ; 67(6): 4707-4725, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498998

RESUMO

Despite decades of research on new diffuse intrinsic pontine glioma (DIPG) treatments, little or no progress has been made on improving patient outcomes. In this work, we explored novel scaffold modifications of M4K2009, a 3,5-diphenylpyridine ALK2 inhibitor previously reported by our group. Here we disclose the design, synthesis, and evaluation of a first-in-class set of 5- to 7-membered ether-linked and 7-membered amine-linked constrained inhibitors of ALK2. This rigidification strategy led us to the discovery of the ether-linked inhibitors M4K2308 and M4K2281 and the amine-linked inhibitors M4K2304 and M4K2306, each with superior potency against ALK2. Notably, M4K2304 and M4K2306 exhibit exceptional selectivity for ALK2 over ALK5, surpassing the reference compound. Preliminary studies on their in vivo pharmacokinetics, including blood-brain barrier penetration, revealed that these constrained scaffolds have favorable exposure and do open a novel chemical space for further optimization and future evaluation in orthotopic models of DIPG.


Assuntos
Aminas , Éteres , Humanos
2.
Sci Rep ; 13(1): 1639, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717567

RESUMO

The total synthesis of four novel mono-methoxy and hydroxyl substituted ring-A dihydronarciclasine derivatives enabled identification of the 7-hydroxyl derivative as a potent and selective antiviral agent targeting SARSCoV-2 and HSV-1. The concentration of this small molecule that inhibited HSV-1 infection by 50% (IC50), determined by using induced pluripotent stem cells (iPCS)-derived brain organ organoids generated from two iPCS lines, was estimated to be 0.504 µM and 0.209 µM. No significant reduction in organoid viability was observed at concentrations up to 50 mM. Genomic expression analyses revealed a significant effect on host-cell innate immunity, revealing activation of the integrated stress response via PERK kinase upregulation, phosphorylation of eukaryotic initiation factor 2α (eIF2α) and type I IFN, as factors potentiating multiple host-defense mechanisms against viral infection. Following infection of mouse eyes with HSV-1, treatment with the compound dramatically reduced HSV-1 shedding in vivo.


Assuntos
Alcaloides de Amaryllidaceae , Antineoplásicos , Herpesvirus Humano 1 , Interferon Tipo I , Camundongos , Animais , Antivirais/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Fosforilação
3.
Front Mol Biosci ; 9: 956095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275624

RESUMO

Drug resistance to front-line malarial treatments represents an ongoing threat to control malaria, a vector borne infectious disease. The malarial parasite, Plasmodium falciparum has developed genetic variants, conferring resistance to the current standard therapeutic artemisinin and its derivatives commonly referred to as artemisinin-combination therapies (ACTs). Emergence of multi-drug resistance parasite genotypes is a warning of potential treatment failure, reaffirming the urgent and critical need to find and validate alternate drug targets to prevent the spread of disease. An attractive and novel drug target includes glucose-regulated protein 78 kDa (GRP78, or BiP), an essential molecular chaperone protein involved in the unfolded protein response that is upregulated in ACT treated P. falciparum parasites. We have shown that both sequence and structure are closely related to human GRP78 (hGRP78), a chaperone belonging to the HSP70 class of ATPase proteins, which is often upregulated in cellular stress responses and cancer. By screening a library of nucleoside analogues, we identified eight 'hit' compounds binding at the active site of the ATP binding domain of P. falciparum GRP78 using a high-throughput ligand soaking screen using x-ray crystallography. These compounds were further evaluated using protein thermal shift assays to assess target binding activity. The nucleoside analogues identified from our screen provide a starting point for the development of more potent and selective antimalarial inhibitors. In addition, we have established a well-defined, high-throughput crystal-based screening approach that can be applied to many crystallizable P. falciparum proteins for generating anti-Plasmodium specific compounds.

5.
J Med Chem ; 64(20): 15017-15036, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34648286

RESUMO

USP5 is a deubiquitinase that has been implicated in a range of diseases, including cancer, but no USP5-targeting chemical probe has been reported to date. Here, we present the progression of a chemical series that occupies the C-terminal ubiquitin-binding site of a poorly characterized zinc-finger ubiquitin binding domain (ZnF-UBD) of USP5 and competitively inhibits the catalytic activity of the enzyme. Exploration of the structure-activity relationship, complemented with crystallographic characterization of the ZnF-UBD bound to multiple ligands, led to the identification of 64, which binds to the USP5 ZnF-UBD with a KD of 2.8 µM and is selective over nine proteins containing structurally similar ZnF-UBD domains. 64 inhibits the USP5 catalytic cleavage of a di-ubiquitin substrate in an in vitro assay. This study provides a chemical and structural framework for the discovery of a chemical probe to delineate USP5 function in cells.


Assuntos
Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
6.
J Med Chem ; 64(3): 1584-1592, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33522809

RESUMO

Increased activity of the lysine methyltransferase NSD2 driven by translocation and activating mutations is associated with multiple myeloma and acute lymphoblastic leukemia, but no NSD2-targeting chemical probe has been reported to date. Here, we present the first antagonists that block the protein-protein interaction between the N-terminal PWWP domain of NSD2 and H3K36me2. Using virtual screening and experimental validation, we identified the small-molecule antagonist 3f, which binds to the NSD2-PWWP1 domain with a Kd of 3.4 µM and abrogates histone H3K36me2 binding to the PWWP1 domain in cells. This study establishes an alternative approach to targeting NSD2 and provides a small-molecule antagonist that can be further optimized into a chemical probe to better understand the cellular function of this protein.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Simulação por Computador , Cristalografia por Raios X , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Domínios Proteicos , Proteínas Repressoras/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
7.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33591753

RESUMO

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Assuntos
Benzodiazepinonas/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Regulação Alostérica , Sítio Alostérico , Benzodiazepinonas/síntese química , Benzodiazepinonas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Estereoisomerismo
8.
J Med Chem ; 63(9): 4978-4996, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32369358

RESUMO

Diffuse intrinsic pontine glioma is an aggressive pediatric cancer for which no effective chemotherapeutic drugs exist. Analysis of the genomic landscape of this disease has led to the identification of the serine/threonine kinase ALK2 as a potential target for therapeutic intervention. In this work, we adopted an open science approach to develop a series of potent type I inhibitors of ALK2 which are orally bio-available and brain-penetrant. Initial efforts resulted in the discovery of M4K2009, an analogue of the previously reported ALK2 inhibitor LDN-214117. Although highly selective for ALK2 over the TGF-ßR1 receptor ALK5, M4K2009 is also moderately active against the hERG potassium channel. Varying the substituents of the trimethoxyphenyl moiety gave rise to an equipotent benzamide analogue M4K2149 with reduced off-target affinity for the ion channel. Additional modifications yielded 2-fluoro-6-methoxybenzamide derivatives (26a-c), which possess high inhibitory activity against ALK2, excellent selectivity, and superior pharmacokinetic profiles.


Assuntos
Receptores de Ativinas Tipo I/antagonistas & inibidores , Benzamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Receptores de Ativinas Tipo I/genética , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Células CACO-2 , Permeabilidade da Membrana Celular/efeitos dos fármacos , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Feminino , Células HEK293 , Humanos , Masculino , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Mutação , Piperazinas/síntese química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/síntese química , Piridinas/farmacocinética , Relação Estrutura-Atividade
9.
Chem Commun (Camb) ; 55(73): 10868-10871, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31433408

RESUMO

A synthesis of densely functionalised α-acyloxy enaminals and enaminones via a novel homogeneous silver(i) catalyzed rearrangement of 1-acyloxy-3-azido ketones is reported. This silver catalyzed reaction involves an internal redox process comprised of four net transformations: loss of nitrogen, reductive cleavage of the azide, 1,2-acyl migration and oxidation of the acyloxy position to an aldehyde (enaminal) or ketone (enaminone). These mild reaction conditions have been applied to acyclic, cyclic, and chiral substrates yielding the rearranged enaminals or enaminones in up to 91% yield, all of which prove to be stable, isolatable products.

10.
Nat Commun ; 10(1): 19, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604761

RESUMO

Protein methyltransferases (PMTs) comprise a major class of epigenetic regulatory enzymes with therapeutic relevance. Here we present a collection of chemical probes and associated reagents and data to elucidate the function of human and murine PMTs in cellular studies. Our collection provides inhibitors and antagonists that together modulate most of the key regulatory methylation marks on histones H3 and H4, providing an important resource for modulating cellular epigenomes. We describe a comprehensive and comparative characterization of the probe collection with respect to their potency, selectivity, and mode of inhibition. We demonstrate the utility of this collection in CD4+ T cell differentiation assays revealing the potential of individual probes to alter multiple T cell subpopulations which may have implications for T cell-mediated processes such as inflammation and immuno-oncology. In particular, we demonstrate a role for DOT1L in limiting Th1 cell differentiation and maintaining lineage integrity. This chemical probe collection and associated data form a resource for the study of methylation-mediated signaling in epigenetics, inflammation and beyond.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Proteínas Metiltransferases/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ensaios Enzimáticos/métodos , Epigenômica/métodos , Células HEK293 , Histona-Lisina N-Metiltransferase , Humanos , Células Jurkat , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Células Th1/efeitos dos fármacos , Células Th1/fisiologia
11.
Sci Rep ; 8(1): 16662, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413769

RESUMO

Acyclovir (ACV) is an effective antiviral agent for treating lytic Herpes Simplex virus, type 1 (HSV-1) infections, and it has dramatically reduced the mortality rate of herpes simplex encephalitis. However, HSV-1 resistance to ACV and its derivatives is being increasingly documented, particularly among immunocompromised individuals. The burgeoning drug resistance compels the search for a new generation of more efficacious anti-herpetic drugs. We have previously shown that trans-dihydrolycoricidine (R430), a lycorane-type alkaloid derivative, effectively inhibits HSV-1 infections in cultured cells. We now report that R430 also inhibits ACV-resistant HSV-1 strains, accompanied by global inhibition of viral gene transcription and enrichment of H3K27me3 methylation on viral gene promoters. Furthermore, we demonstrate that R430 prevents HSV-1 reactivation from latency in an ex vivo rodent model. Finally, among a panel of DNA viruses and RNA viruses, R430 inhibited Zika virus with high therapeutic index. Its therapeutic index is comparable to standard antiviral drugs, though it has greater toxicity in non-neuronal cells than in neuronal cells. Synthesis of additional derivatives could enable more efficacious antivirals and the identification of active pharmacophores.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antivirais/farmacologia , Infecções por Vírus de DNA/tratamento farmacológico , Vírus de DNA/efeitos dos fármacos , Infecções por Vírus de RNA/tratamento farmacológico , Vírus de RNA/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Vírus de DNA/virologia , Humanos , Camundongos , Infecções por Vírus de RNA/virologia , Células Vero
12.
J Med Chem ; 59(6): 2478-96, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26958703

RESUMO

WD repeat-containing protein 5 (WDR5) is an important component of the multiprotein complex essential for activating mixed-lineage leukemia 1 (MLL1). Rearrangement of the MLL1 gene is associated with onset and progression of acute myeloid and lymphoblastic leukemias, and targeting the WDR5-MLL1 interaction may result in new cancer therapeutics. Our previous work showed that binding of small molecule ligands to WDR5 can modulate its interaction with MLL1, suppressing MLL1 methyltransferase activity. Initial structure-activity relationship studies identified N-(2-(4-methylpiperazin-1-yl)-5-substituted-phenyl) benzamides as potent and selective antagonists of this protein-protein interaction. Guided by crystal structure data and supported by in silico library design, we optimized the scaffold by varying the C-1 benzamide and C-5 substituents. This allowed us to develop the first highly potent (Kdisp < 100 nM) small molecule antagonists of the WDR5-MLL1 interaction and demonstrate that N-(4-(4-methylpiperazin-1-yl)-3'-(morpholinomethyl)-[1,1'-biphenyl]-3-yl)-6-oxo-4-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide 16d (OICR-9429) is a potent and selective chemical probe suitable to help dissect the biological role of WDR5.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacologia , Di-Hidropiridinas/síntese química , Di-Hidropiridinas/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/efeitos dos fármacos , Leucemia/tratamento farmacológico , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos SCID , Modelos Moleculares , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Difração de Raios X
13.
ACS Med Chem Lett ; 7(1): 46-50, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819664

RESUMO

The Amaryllidaceae alkaloid trans-dihydrolycoricidine 7 and three analogues 8-10 were produced via asymmetric chemical synthesis. Alkaloid 7 proved superior to acyclovir, the current standard for herpes simplex virus, type 1 (HSV-1) infection. Compound 7 potently inhibited lytic HSV-1 infection, significantly reduced HSV-1 reactivation, and more potently inhibited varicella zoster virus (VZV) lytic infection. A configurationally defined (3R)-secondary alcohol at C3 proved crucial for efficacious inhibition of lytic HSV-1 infection.

14.
Angew Chem Int Ed Engl ; 53(32): 8450-4, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24954727

RESUMO

A total synthesis of the anticancer natural product (+)-trans-dihydrolycoricidine is reported from α-azidoacetone and cinnamaldehyde precursors. Key elements include an asymmetric organocatalytic sequence proceeding by a regiospecific secondary-amine-catalyzed syn Michael addition followed by an intramolecular aldol reaction. The sequence results in the formation of an advanced intermediate, containing three stereogenic centers, in one step which and was converted into the title compound in eight steps.


Assuntos
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA