Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Vis Exp ; (196)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37395576

RESUMO

Establishing tissue-mimicking biophotonic phantom materials that provide long-term stability are imperative to enable the comparison of biomedical imaging devices across vendors and institutions, support the development of internationally recognized standards, and assist the clinical translation of novel technologies. Here, a manufacturing process is presented that results in a stable, low-cost, tissue-mimicking copolymer-in-oil material for use in photoacoustic, optical, and ultrasound standardization efforts. The base material consists of mineral oil and a copolymer with defined Chemical Abstract Service (CAS) numbers. The protocol presented here yields a representative material with a speed of sound c(f) = 1,481 ± 0.4 m·s-1 at 5 MHz (corresponds to the speed of sound of water at 20 °C), acoustic attenuation α(f) = 6.1 ± 0.06 dB·cm-1 at 5 MHz, optical absorption µa(λ) = 0.05 ± 0.005 mm-1 at 800 nm, and optical scattering µs'(λ) = 1 ± 0.1 mm-1 at 800 nm. The material allows independent tuning of the acoustic and optical properties by respectively varying the polymer concentration or light scattering (titanium dioxide) and absorbing agents (oil-soluble dye). The fabrication of different phantom designs is displayed and the homogeneity of the resulting test objects is confirmed using photoacoustic imaging. Due to its facile, repeatable fabrication process and durability, as well as its biologically relevant properties, the material recipe has high promise in multimodal acoustic-optical standardization initiatives.


Assuntos
Diagnóstico por Imagem , Óleo Mineral , Imagens de Fantasmas , Ultrassonografia/métodos , Acústica , Polímeros/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-36215339

RESUMO

This article presents basic principles of hydrophone measurements, including mechanisms of action for various hydrophone designs, sensitivity and directivity calibration procedures, practical considerations for performing measurements, signal processing methods to correct for both frequency-dependent sensitivity and spatial averaging across the hydrophone sensitive element, uncertainty in hydrophone measurements, special considerations for high-intensity therapeutic ultrasound, and advice for choosing an appropriate hydrophone for a particular measurement task. Recommendations are made for information to be included in hydrophone measurement reporting.


Assuntos
Terapia por Ultrassom , Ultrassonografia/métodos , Calibragem , Processamento de Sinais Assistido por Computador
3.
Artigo em Inglês | MEDLINE | ID: mdl-36094977

RESUMO

Hydrophones are generally calibrated in acoustic fields with temporally localized (short pulse) or long duration (tone burst) signals. Free-field conditions are achieved by time gating any reflections from the hydrophone body, mounting structures, and surrounding water tank boundaries arriving at the active sensing element. Consequently, the sensitivity response of the hydrophone is a result of direct waves incident on its active element, free from any contaminating effects of reflections. However, when using tone bursts below 400 kHz to calibrate hydrophones, it may not be possible to isolate the direct wave from reflection artifacts. This means that the sensitivity responses derived at these frequencies using short pulse and tone burst signals might not be comparable as they can be characteristic of the acoustic field interaction with either/both the hydrophone active element alone or the hydrophone active element and body. Therefore, there is a need to consider an appropriate calibration method for a given hydrophone type, depending on whether the eventual application employs short pulse or tone burst acoustic fields. This article presents the findings from a short study comprising four needle-type hydrophones of active element diameters in the range of 1-4 mm. These hydrophones were calibrated from 30 kHz to 1.6 MHz using established calibration methodologies within the underwater acoustics (UWA) and ultrasound (US) areas employed at the National Physical Laboratory (NPL), Teddington, U.K. In UWA tone, burst acoustic fields are used, while in US, it is short pulses. The 2- and 4-mm-diameter needle hydrophones showed the largest variation at the overlapping frequencies, in which the maximum disagreement of UWA calibration was 30% relative to US calibration. For the 4-mm hydrophone, UWA calibration exhibited resonant sensitivity structure between 100 and 450 kHz, but which was absent in US calibration. This observed behavior was further investigated theoretically by using a validated acoustic wave solver to confirm the resonant sensitivity structure seen in the case of UWA calibration. The work contained within illustrates the need to ensure that the method of calibration is carefully considered in the context of the duration of the acoustic signals for which the hydrophone is intended.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36112557

RESUMO

Hydrophones are pivotal measurement devices ensuring medical ultrasound acoustic exposures comply with the relevant national and international safety criteria. These devices have enabled the spatial and temporal distribution of key safety parameters to be determined in an objective and standardized way. Generally based on piezoelectric principles of operation, to convert generated voltage waveforms to acoustic pressure, they require calibration in terms of receive sensitivity, expressed in units of [Formula: see text]Pa-1. Reliable hydrophone calibration with associated uncertainties plays a key role in underpinning a measurement framework that ensures exposure measurements are comparable and traceable to internationally agreed units, irrespective of where they are carried out globally. For well over three decades, the U.K. National Physical Laboratory (NPL) has provided calibrations to the user community covering the frequency range 0.1-60 MHz, traceable to a primary realization of the acoustic pascal through optical interferometry. Typical uncertainties for sensitivity are 6%-22% (for a coverage factor k = 2), degrading with frequency. The article specifically focuses on the dissemination of the acoustic pascal through NPL's calibration services that are based on a comparison with secondary standard hydrophones previously calibrated using the NPL primary standard. The work demonstrates the stability of the employed dissemination protocols by presenting representative calibration histories on a selection of commercially available hydrophones. Results reaffirm the guidance provided within international standards for regular calibration of a hydrophone in order to underpin measurement confidence. The process by which internationally agreed realizations of the acoustic pascal are compared and validated through key comparisons (KCs) is also described.

5.
IEEE Trans Ultrason Ferroelectr Freq Control ; 69(10): 2943-2954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35976833

RESUMO

This study describes the first in vivo acoustic attenuation measurements of breast tissue undertaken using a novel phase-insensitive detection technique employing a differential pyroelectric sensor. The operation of the sensor is thermal in nature, with its output signal being dictated by the acoustic power integrated over its surface. The particularly novel feature of the sensor lies in its differential principle of operation, which significantly enhances its immunity to background acoustic and vibration noise. A large area variant of the sensor was used to detect ultrasonic energy generated by an array of 14 discrete 3.2-MHz plane piston transducers, transmitted through pendent breasts in water. The transduction and reception capability represent key parts of a prototype Quantitative Ultrasound Computed Tomography Test Facility developed at the National Physical Laboratory to study the efficacy of phase-insensitive ultrasound computed tomography of breast phantoms containing a range of appropriate inclusions, in particular, the measurement uncertainties associated with quantitative reconstructions of the acoustic attenuation coefficient. For this study, attenuation coefficient measurements were made using 1-D projections on 12 nominally healthy study volunteers, whose age ranged from 19 to 65 years. Averaged or bulk attenuation coefficient values were generated in the range 1.7-4.6 dBcm -1 at 3.2 MHz and have been compared with existing literature, derived from in vivo and ex vivo studies. Results are encouraging and indicate that the relatively simple technique could be applied as a robust method for assessing the properties of breast tissue, particularly the balance of fatty (adipose) and fibroglandular components.


Assuntos
Transdutores , Ultrassom , Adulto , Idoso , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Ultrassonografia/métodos , Água , Adulto Jovem
6.
IEEE Trans Med Imaging ; 40(12): 3593-3603, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34152979

RESUMO

Photoacoustic imaging (PAI) standardisation demands a stable, highly reproducible physical phantom to enable routine quality control and robust performance evaluation. To address this need, we have optimised a low-cost copolymer-in-oil tissue-mimickingmaterial formulation. The base material consists of mineral oil, copolymer and stabiliser with defined Chemical Abstract Service numbers. Speed of sound c(f) and acoustic attenuation coefficient α (f) were characterised over 2-10 MHz; optical absorption µa ( λ ) and reduced scattering µs '( λ ) coefficients over 450-900 nm. Acoustic properties were optimised by modifying base component ratios and optical properties were adjusted using additives. The temporal, thermomechanical and photo-stabilitywere studied, alongwith intra-laboratory fabrication and field-testing. c(f) could be tuned up to (1516±0.6) [Formula: see text] and α (f) to (17.4±0.3)dB · cm -1 at 5 MHz. The base material exhibited negligible µa ( λ ) and µs '( λ ), which could be independently tuned by addition of Nigrosin or TiO2 respectively. These properties were stable over almost a year and were minimally affected by recasting. The material showed high intra-laboratory reproducibility (coefficient of variation <4% for c ( f ), α ( f ), optical transmittance and reflectance), and good photo- and mechanical-stability in the relevant working range (20-40°C). The optimised copolymer-in-oil material represents an excellent candidate for widespread application in PAI phantoms, with properties suitable for broader use in biophotonics and ultrasound imaging standardisation efforts.


Assuntos
Técnicas Fotoacústicas , Acústica , Diagnóstico por Imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
7.
Ultrasonics ; 114: 106378, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582459

RESUMO

The effect of temperature and electrical drive conditions on the output of lead zirconate titanate (PZT) transducers is of particular interest in ultrasound metrology and medical ultrasound applications. In this work, the temperature-dependent output of two single-element PZT transducers was measured between 22 °C and 46 °C. Two independent measurement methods were used, namely radiation force balance measurements and laser vibrometry. When driven at constant voltage using a 50 Ω matched signal generator and amplifier using continuous wave (CW) or quasi-CW excitation, the output of the two transducers increased on average by 0.6 % per degree, largely due to an increase in transducer efficiency with temperature. The two measurement methods showed close agreement. Similar trends were observed when using single cycle excitation with the same signal chain. However, when driven using a pulser (which is not electrically matched), the two transducers exhibited different behaviour depending on their electrical impedance. Accounting for the temperature-dependent output of PZT transducers could have implications for many areas of ultrasound metrology, for example, in therapeutic ultrasound where a coupling fluid at an increased or decreased temperature is often used.

8.
Phys Med Biol ; 65(23)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32998112

RESUMO

Tissue mimicking materials (TMMs), typically contained within phantoms, have been used for many decades in both imaging and therapeutic applications. This review investigates the specifications that are typically being used in development of the latest TMMs. The imaging modalities that have been investigated focus around CT, mammography, SPECT, PET, MRI and ultrasound. Therapeutic applications discussed within the review include radiotherapy, thermal therapy and surgical applications. A number of modalities were not reviewed including optical spectroscopy, optical imaging and planar x-rays. The emergence of image guided interventions and multimodality imaging have placed an increasing demand on the number of specifications on the latest TMMs. Material specification standards are available in some imaging areas such as ultrasound. It is recommended that this should be replicated for other imaging and therapeutic modalities. Materials used within phantoms have been reviewed for a series of imaging and therapeutic applications with the potential to become a testbed for cross-fertilization of materials across modalities. Deformation, texture, multimodality imaging and perfusion are common themes that are currently under development.


Assuntos
Imageamento por Ressonância Magnética , Imagem Multimodal , Mamografia , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único
9.
Ultrasound Med Biol ; 46(11): 3135-3144, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873445

RESUMO

Temperature estimation is a fundamental step in assessment of the efficacy of thermal therapy. A thermochromic material sensitive within the temperature range 52.5°C-75°C has been developed. The material is based on polyvinyl alcohol cryogel with the addition of a commercial thermochromic ink. It is simple to manufacture, low cost, non-toxic and versatile. The thermal response of the material was evaluated using multiple methods, including immersion in a temperature-controlled water bath, a temperature-controlled heated needle and high-intensity focused ultrasound (HIFU) sonication. Changes in colour were evaluated using both RGB (red, green, blue) maps and pixel intensities. Acoustic and thermal properties of the material were measured. Thermo-acoustic simulations were run with an open-source software, and results were compared with the HIFU experiments, showing good agreement. The material has good potential for the development of ultrasound therapy phantoms.


Assuntos
Teste de Materiais , Imagens de Fantasmas , Álcool de Polivinil , Terapia por Ultrassom , Cor , Temperatura Alta
10.
Ultrasound Med Biol ; 46(9): 2520-2529, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553528

RESUMO

Acoustic output power is an important safety-related parameter whose standardised measurement method involves use of a radiation force balance in conjunction with a special target that is typically designed to be totally absorbing to ultrasound. International Standard International Electrotechnical Commission (IEC) 61161 specifies important performance criteria for such an absorber, such as transmission loss and reflection loss. Currently, there is a lack of acoustic absorbers meeting these requirements at low frequencies (<0.5 MHz). This is unsatisfactory given emerging clinical applications, particularly therapeutic. Described here is an acoustic absorber appropriate for application below 0.5 MHz. Through use of two National Physical Laboratory measurement facilities, the absorber transmission loss and reflection loss have been derived over the frequency range 50-500 kHz. Results are presented and compared with performance requirements specified in IEC 61161, revealing the efficacy of the new material as an absorbing radiation force balance target down to a frequency of approximately 120 kHz.


Assuntos
Ondas Ultrassônicas , Radiação , Transdutores
11.
Artigo em Inglês | MEDLINE | ID: mdl-31634829

RESUMO

An algorithm was developed for the correction of ring artifacts in phase-insensitive ultrasound computed tomography attenuation images. Differences in the measurement sensitivity between the ultrasound transducer array elements cause discontinuities in the sinogram which manifest as rings and arcs in the reconstructed image. The magnitudes of the discontinuities are potentially time-varying and dependent on the attenuation being measured. The algorithm dynamically determines the measurement sensitivity of each transducer in the array during the scan by comparison with both the elements to its left and the elements to its right. Elements at either end of the array are corrected, assuming a zero-attenuation path. The two estimates of sensitivity are combined using a weighted mean similar to a Kalman filter. The algorithm was tested on simulated and experimentally acquired data. It was demonstrated to reduce the root-mean-square error (RMSE) of simulated images against ground-truth images by up to a factor of 50 compared with uncorrected images and to visibly reduce artifacts on images reconstructed from the experimentally acquired data.

12.
Artigo em Inglês | MEDLINE | ID: mdl-31613754

RESUMO

Polyvinyl chloride plastisol (PVCP) has been increasingly used as a phantom material for photoacoustic and ultrasound imaging. As one of the most useful polymeric materials for industrial applications, its mechanical properties and behavior are well-known. Although the acoustic and optical properties of several formulations have previously been investigated, it is still unknown how these are affected by varying the fabrication method. Here, an improved and straightforward fabrication method is presented, and the effect of curing temperature and curing time on the PVCP acoustic and optical properties, as well as their stability over time, is investigated. The speed of sound and attenuation were determined over a frequency range from 2 to 15 MHz, while the optical attenuation spectra of samples were measured over a wavelength range from 500 to 2200 nm. The results indicate that the optimum properties are achieved at curing temperatures between 160 °C and 180 °C, while the required curing time decreases with increasing temperature. The properties of the fabricated phantoms were highly repeatable, meaning that the phantoms are not sensitive to the manufacturing conditions provided that the curing temperature and time are within the range of complete gelation-fusion (samples are optically clear) and below the limit of thermal degradation (indicated by the yellowish appearance of the sample). The samples' long-term stability was assessed over 16 weeks, and no significant change was observed in the measured acoustic and optical properties.

13.
Micromachines (Basel) ; 9(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30424337

RESUMO

The acoustically-driven dynamics of isolated particle-like objects in microfluidic environments is a well-characterised phenomenon, which has been the subject of many studies. Conversely, very few acoustofluidic researchers looked at coated microbubbles, despite their widespread use in diagnostic imaging and the need for a precise characterisation of their acoustically-driven behaviour, underpinning therapeutic applications. The main reason is that microbubbles behave differently, due to their larger compressibility, exhibiting much stronger interactions with the unperturbed acoustic field (primary Bjerknes forces) or with other bubbles (secondary Bjerknes forces). In this paper, we study the translational dynamics of commercially-available polymer-coated microbubbles in a standing-wave acoustofluidic device. At increasing acoustic driving pressures, we measure acoustic forces on isolated bubbles, quantify bubble-bubble interaction forces during doublet formation and study the occurrence of sub-wavelength structures during aggregation. We present a dynamic characterisation of microbubble compressibility with acoustic pressure, highlighting a threshold pressure below which bubbles can be treated as uncoated. Thanks to benchmarking measurements under a scanning electron microscope, we interpret this threshold as the onset of buckling, providing a quantitative measurement of this parameter at the single-bubble level. For acoustofluidic applications, our results highlight the limitations of treating microbubbles as a special case of solid particles. Our findings will impact applications where knowing the buckling pressure of coated microbubbles has a key role, like diagnostics and drug delivery.

14.
Ultrason Sonochem ; 34: 354-364, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773256

RESUMO

With a number of cavitation meters on the market which claim to characterise fields in ultrasonic cleaning baths, this paper provides an objective comparison of a selection of these devices and establishes the extent to which their claims are met. The National Physical Laboratory's multi-frequency ultrasonic reference vessel provided the stable 21.06kHz field, above and below the inertial cavitation threshold, as a test bed for the sensor comparison. Measurements from these devices were evaluated in relation to the known acoustic pressure distribution in the cavitating vessel as a means of identifying the mode of operation of the sensors and to examine the particular indicator of cavitation activity which they deliver. Through the comparison with megahertz filtered acoustic signals generated by inertial cavitation, it was determined that the majority of the cavitation meters used in this study responded to acoustic pressure generated by the direct applied acoustic field and therefore tended to overestimate the occurrence of cavitation within the vessel, giving non-zero responses under conditions when there was known to be no inertial cavitation occurring with the reference vessel. This has implications for interpreting the data they provide in user applications.

15.
Ultrasound Med Biol ; 41(1): 317-33, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25220268

RESUMO

To support the development of clinical applications of high-frequency ultrasound, appropriate tissue-mimicking materials (TMMs) are required whose acoustic properties have been measured using validated techniques. This paper describes the characterisation of the sound speed (phase velocity) and attenuation coefficient of the International Electrotechnical Commission (IEC) agar-based TMM over the frequency range 1 to 60 MHz. Measurements implemented a broadband through-transmission substitution immersion technique over two overlapping frequency ranges, with co-axially aligned 50 MHz centre-frequency transducers employed for characterisation above 15 MHz. In keeping with usual practice employed within the technical literature, thin acoustic windows (membranes) made of 12-µm-thick Mylar protected the TMM from water damage. Various important sources of uncertainty that could compromise measurement accuracy have been identified and evaluated through a combination of experimental studies and modelling. These include TMM sample thickness, measured both manually and acoustically, and the influence of interfacial losses that, even for thin protective membranes, are significant at the frequencies of interest. In agreement with previous reports, the attenuation coefficient of the IEC TMM exhibited non-linear frequency dependence, particularly above 20 MHz, yielding a value of 0.93 ± 0.04 dB cm(-1) MHz(-1) at 60 MHz, derived at 21 ± 0.5°C. For the first time, phase velocity, measured with an estimated uncertainty of ±3.1 m s(-1), has been found to be dispersive over this extended frequency range, increasing from 1541 m s(-1) at 1 MHz to 1547 m s(-1) at 60 MHz. This work will help standardise acoustic property measurements, and establishes a reference measurement capability for TMMs underpinning clinical applications at elevated frequencies.


Assuntos
Ágar/química , Ágar/efeitos da radiação , Materiais Biomiméticos/química , Materiais Biomiméticos/efeitos da radiação , Imagens de Fantasmas/normas , Ultrassonografia/instrumentação , Ultrassonografia/normas , Absorção de Radiação , Ondas de Choque de Alta Energia , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos , Reino Unido
16.
Ultrasound Med Biol ; 40(12): 2895-902, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25438864

RESUMO

The acoustic properties of a robust tissue-mimicking material based on konjac­carrageenan at ultrasound frequencies in the range 5­60 MHz are described. Acoustic properties were characterized using two methods: a broadband reflection substitution technique using a commercially available preclinical ultrasound scanner (Vevo 770, FUJIFILM VisualSonics, Toronto, ON, Canada), and a dedicated high-frequency ultrasound facility developed at the National Physical Laboratory (NPL, Teddington, UK), which employed a broadband through-transmission substitution technique. The mean speed of sound across the measured frequencies was found to be 1551.7 ± 12.7 and 1547.7 ± 3.3 m s21, respectively. The attenuation exhibited a non-linear dependence on frequency, f (MHz), in the form of a polynomial function: 0.009787f2 1 0.2671f and 0.01024f2 1 0.3639f, respectively. The characterization of this tissue-mimicking material will provide reference data for designing phantoms for preclinical systems, which may, in certain applications such as flow phantoms, require a physically more robust tissuemimicking material than is currently available.


Assuntos
Amorphophallus/química , Materiais Biomiméticos/química , Carragenina/química , Imagens de Fantasmas , Extratos Vegetais/química , Ultrassonografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Artigo em Inglês | MEDLINE | ID: mdl-24803021

RESUMO

Enhancements to the existing primary standard optical interferometer and narrowband tone-burst comparison calibration methods for miniature medical ultrasonic hydrophones of the membrane type over the frequency range 100 to 500 kHz are described. Improvements were realized through application of an ultrasonically absorbing waveguide made of a low-frequency-absorbing tile used in sonar applications which narrows the spatial extent of the broad acoustic field. The waveguide was employed in conjunction with a sonar multilayered polyvinylidene difluoride (PVDF) hydrophone used as a transmitting transducer covering a frequency range of 100 kHz to 1 MHz. The acoustic field emanating from the ultrasonically absorbing waveguide reduced the significance of diffracted acoustic waves from the membrane hydrophone ring and the consequent interference of this wave with the direct acoustic wave received by the active element of the hydrophone during calibration. Four membrane hydrophone make/ models with ring sizes (defined as the inner diameter of the annular mounting ring of the hydrophone) in the range 50 to 100 mm were employed along with a needle hydrophone. A reference membrane hydrophone, calibrated using the NPL primary standard optical interferometer in combination with the ultrasonically absorbing waveguide, was subsequently used to calibrate the other four hydrophones by comparison, again using the ultrasonically absorbing waveguide. In comparison to existing methods, the use of the ultrasonically absorbing waveguide enabled the low-frequency calibration limit of a membrane hydrophone with a ring diameter of 50 mm to be reduced from 400 kHz to 200 kHz.

18.
Phys Med Biol ; 58(15): 5237-68, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23852003

RESUMO

The principle of using ultrasonic computed tomography (UCT) clinically for mapping tissue acoustic properties was suggested almost 40 years ago. Despite strong research activity, UCT been unable to rival its x-ray counterpart in terms of the ability to distinguish tissue pathologies. Conventional piezoelectric detectors deployed in UCT are termed phase-sensitive (PS) and it is well established that this property can lead to artefacts related to refraction and phase-cancellation that mask true tissue structure, particularly for reconstructions involving attenuation. Equally, it has long been known that phase-insensitive (PI) detectors are more immune to this effect, although sufficiently sensitive devices for clinical use have not been available. This paper explores the application of novel PI detectors to UCT. Their operating principle is based on exploiting the pyroelectric properties of the piezoelectric polymer polyvinylidene difluoride. An important detector performance characteristic which makes it particularly suited to UCT, is the lack of directionality of the PI response, relative to the PS detector mode of operation. The performance of the detectors is compared to conventional PS detection methods, for quantitatively assessing the attenuation distribution within various test objects, including a two-phase polyurethane phantom. UCT images are presented for a range of single detector apertures; tomographic reconstruction images being compared with the known structure of phantoms containing inserts as small as 3 mm, which were readily imaged. For larger diameter inserts (>10 mm), the transmitter-detector combination was able to establish the attenuation coefficient of the insert to within ±10% of values determined separately from plane-wave measurements on representative material plaques. The research has demonstrated that the new PI detectors are significantly less susceptible to refraction and phase-cancellation artefacts, generating realistic images in situations where conventionally-employed through-transmission PS detection techniques were unable to do so. The implications of the study to the potential screening of breast disease are discussed.


Assuntos
Condutividade Elétrica , Tomografia/instrumentação , Ultrassom , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Poliuretanos
19.
Ultrasound Med Biol ; 38(5): 767-76, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22425374

RESUMO

Significant nonuniformities in the acoustic intensity distribution generated by physiotherapy ultrasound treatment heads are not uncommon, potentially leading to significant localised temperature rises and tissue damage. An acoustic absorber tile containing a thermochromic pigment has been developed to provide rapid quality assurance of physiotherapy ultrasound treatment heads by virtue of a thermochromic colour change, indicating the time-averaged intensity distributions generated by these devices. As a bench-top device, the use of the tile is designed to mimic the nature of the physiotherapeutic application, requiring minimal training. Two designs where thermochromic pigments are added to the various polymeric layers of the tile are presented. Testing has been conducted with two physiotherapy treatment heads of differing performance, one of them notably exhibiting a strong "hot-spot" in localised acoustic time-averaged intensity. Findings show good qualitative agreement with classical hydrophone scans. Techniques are explored for the correction of nonlinearities in the thermochromic relationship, to enhance the accuracy of quantitative assessment.


Assuntos
Modalidades de Fisioterapia/instrumentação , Modalidades de Fisioterapia/normas , Radiometria/instrumentação , Radiometria/normas , Terapia por Ultrassom/instrumentação , Terapia por Ultrassom/normas , Desenho de Equipamento , Análise de Falha de Equipamento , Garantia da Qualidade dos Cuidados de Saúde/métodos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Reino Unido
20.
Ultrasonics ; 51(4): 420-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21163509

RESUMO

Progress in developing a new measurement method for ultrasound output power is described. It is a thermal-based technique with the acoustic power generated by a transducer being absorbed within a specially developed polyurethane rubber material, whose high absorption coefficient ensures energy deposition within a few mm of the ultrasonic wave entering the material. The rate of change of temperature at the absorber surface is monitored using the pyroelectric voltage generated from electrodes disposed either side of a 60 mm diameter, 0.061 mm thick membrane of the piezoelectric polymer polyvinylidene fluoride (pvdf) bonded to the absorber. The change in the pyroelectric output voltage generated by the sensor when the transducer is switched ON and OFF is proportional to the delivered ultrasound power. The sensitivity of the device is defined as the magnitude of these switch voltages to a unit input stimulus of power (watt). Three important aspects of the performance of the pyroelectric sensor have been studied. Firstly, measurements have revealed that the temperature dependent sensitivity increases over the range from approximately 20°C to 30°C at a rate of +1.6% °C(-1). Studies point to the key role that the properties of both the absorbing backing layer and pvdf membrane play in controlling the sensor response. Secondly, the high sensitivity of the technique has been demonstrated using an NPL Pulsed Checksource, a 3.5 MHz focused transducer delivering a nominal acoustic power level of 4 mW. Finally, proof-of-concept of a new type of acoustic sensor responding to time-averaged intensity has been demonstrated, through fabrication of an absorber-backed hydrophone of nominal active element diameter 0.4 mm. A preliminary study using such a device to resolve the spatial distribution of acoustic intensity within plane-piston and focused 3.5 MHz acoustic fields has been completed. Derived beam profiles are compared to conventional techniques that depend on deriving intensity from acoustic pressure measurements made using the sensor as a calibrated hydrophone.


Assuntos
Análise de Falha de Equipamento/instrumentação , Transdutores , Ultrassonografia/instrumentação , Calibragem , Desenho de Equipamento , Poliuretanos , Condutividade Térmica , Terapia por Ultrassom/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA