Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Redox Biol ; 76: 103311, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153251

RESUMO

Clinical studies have previously established the role of olive products in cardiovascular disease (CVD) prevention, whilst the identification of the responsible constituents for the beneficial effects is still pending. We sought to assess and compare the cardioprotective potential of oleuropein (OL), hydroxytyrosol (HT), oleocanthal (OC) and oleanolic Acid (OA), regarding Ischemia/Reperfusion Injury (IRI) and CVD risk factors alleviation. The scope of the study was to design a potent and safe combinatorial therapy for high-cardiovascular-risk patients on a bench-to-bedside approach. We evaluated the IRI-limiting potential of 6-weeks treatment with OL, HT, OC or OA at nutritional doses, in healthy and metabolic syndrome (MS)-burdened mice. Three combinatorial regimens were designed and the mixture with preponderant benefits (OL-HT-OC, Combo 2), including infarct sparing and antiglycemic potency, compared to the isolated compounds, was further investigated for its anti-atherosclerotic effects. In vivo experiments revealed that the combination regimen of Combo 2 presented the most favorable effects in limiting infarct size and hyperglycemia, which was selected to be further investigated in the clinical setting in Chronic Coronary Artery Syndrome (CCAS) patients. Cardiac function, inflammation markers and oxidative stress were assessed at baseline and after 4 weeks of treatment with the OL-HT-OC supplement in the clinical study. We found that OL, OC and OA significantly reduced infarct size in vivo compared to Controls. OL exhibited antihyperglycemic properties and OA attenuated hypercholesterolemia. OL-HT-OA, OL-HT-OC and OL-HT-OC-OA combination regimens were cardioprotective, whereas only OL-HT-OC mitigated hyperglycemia. Combo 2 cardioprotection was attributed to apoptosis suppression, enhanced antioxidant effects and upregulation of antioxidant enzymes. Additionally, it reduced atherosclerotic plaque extent in vivo. OL-HT-OC supplement ameliorated cardiac, vascular and endothelial function in the small-scale clinical study. Conclusively, OL-HT-OC combination therapy exerts potent cardioprotective, antihyperglycemic and anti-atherosclerotic properties in vivo, with remarkable and clinically translatable cardiovascular benefits in high-risk patients.

2.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762537

RESUMO

Acute respiratory distress syndrome (ARDS) is a highly morbid inflammatory lung disease with limited pharmacological interventions. The present study aims to evaluate and compare the potential pulmonoprotective effects of natural prolyl oligopeptidase (POP) inhibitors namely rosmarinic acid (RA), chicoric acid (CA), epigallocatechin-3-gallate (EGCG) and gallic acid (GA), against lipopolysaccharide (LPS)-induced ARDS. Cell viability and expression of pro-inflammatory mediators were measured in RAW264.7 cells and in primary murine lung epithelial and bone marrow cells. Nitric oxide (NO) production was also assessed in unstimulated and LPS-stimulated RAW264.7 cells. For subsequent in vivo experiments, the two natural products (NPs) with the most favorable effects, RA and GA, were selected. Protein, cell content and lipid peroxidation levels in bronchoalveolar lavage fluid (BALF), as well as histopathological changes and respiratory parameters were evaluated in LPS-challenged mice. Expression of key mediators involved in ARDS pathophysiology was detected by Western blotting. RA and GA favorably reduced gene expression of pro-inflammatory mediators in vitro, while GA decreased NO production in macrophages. In LPS-challenged mice, RA and GA co-administration improved respiratory parameters, reduced cell and protein content and malondialdehyde (MDA) levels in BALF, decreased vascular cell adhesion molecule-1 (VCAM-1) and the inducible nitric oxide synthase (iNOS) protein expression, activated anti-apoptotic mechanisms and down-regulated POP in the lung. Conclusively, these synergistic pulmonoprotective effects of RA and GA co-administration could render them a promising prophylactic/therapeutic pharmacological intervention against ARDS.


Assuntos
Produtos Biológicos , Síndrome do Desconforto Respiratório , Animais , Camundongos , Prolil Oligopeptidases , Lipopolissacarídeos/toxicidade , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inibidores Enzimáticos , Ácido Gálico , Mediadores da Inflamação
3.
Exp Biol Med (Maywood) ; 248(18): 1598-1612, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37691393

RESUMO

This study explores the biological effects of hydroxytyrosol (HT), produced by the metabolic engineering of Escherichia coli, in a series of in vitro and in vivo experiments. In particular, a metabolically engineered Escherichia coli strain capable of producing HT was constructed and utilized. HEK293 and HeLa cells were exposed to purified HT to determine non-toxic doses that can offer protection against oxidative stress (activation of Nrf2/HO-1 signaling pathway). Male CD-1 mice were orally supplemented with HT to evaluate (1) renal and hepatic toxicity, (2) endogenous system antioxidant response, and (3) activation of Nrf2/HO-1 system in the liver. HT protected cells from oxidative stress through the activation of Nrf2 regulatory network. Activation of Nrf2 signaling pathway was also observed in the hepatic tissue of the mice. HT supplementation was safe and produced differential effects on mice's endogenous antioxidant defense system. HT biosynthesized from genetically modified Escherichia coli strains is an alternative method to produce high-quality HT that exerts favorable effects in the regulation of the organism's response to oxidative stress. Nonetheless, further investigation of the multifactorial action of HT on the antioxidant network regulation is needed.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Masculino , Camundongos , Antioxidantes/metabolismo , Células HEK293 , Células HeLa , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
4.
Microorganisms ; 11(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985343

RESUMO

Several natural compounds have been explored as immune-boosting, antioxidant and anti-inflammatory dietary supplements. Amongst them, hydroxytyrosol, a natural antioxidant found in olive products, and endemic medicinal plants have attracted the scientific community's and industry's interest. We investigated the safety and biological activity of a standardised supplement containing 10 mg of hydroxytyrosol synthesized using genetically modified Escherichia coli strains and equal amounts (8.33 µL) of essential oils from Origanum vulgare subsp. hirtum, Salvia fruticosa and Crithmum maritimum in an open-label, single-arm, prospective clinical study. The supplement was given to 12 healthy subjects, aged 26-52, once a day for 8 weeks. Fasting blood was collected at three-time points (weeks 0, 8 and follow-up at 12) for analysis, which included full blood count and biochemical determination of lipid profile, glucose homeostasis and liver function panel. Specific biomarkers, namely homocysteine, oxLDL, catalase and total glutathione (GSH) were also studied. The supplement induced a significant reduction in glucose, homocysteine and oxLDL levels and was tolerated by the subjects who reported no side effects. Cholesterol, triglyceride levels and liver enzymes remained unaffected except for LDH. These data indicate the supplement's safety and its potential health-beneficial effects against pathologic conditions linked to cardiovascular disease.

5.
Basic Res Cardiol ; 117(1): 27, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581445

RESUMO

Major clinical trials with sodium glucose co-transporter-2 inhibitors (SGLT-2i) exhibit protective effects against heart failure events, whereas inconsistencies regarding the cardiovascular death outcomes are observed. Therefore, we aimed to compare the selective SGLT-2i empagliflozin (EMPA), dapagliflozin (DAPA) and ertugliflozin (ERTU) in terms of infarct size (IS) reduction and to reveal the cardioprotective mechanism in healthy non-diabetic mice. C57BL/6 mice randomly received vehicle, EMPA (10 mg/kg/day) and DAPA or ERTU orally at the stoichiometrically equivalent dose (SED) for 7 days. 24 h-glucose urinary excretion was determined to verify SGLT-2 inhibition. IS of the region at risk was measured after 30 min ischemia (I), and 120 min reperfusion (R). In a second series, the ischemic myocardium was collected (10th min of R) for shotgun proteomics and evaluation of the cardioprotective signaling. In a third series, we evaluated the oxidative phosphorylation capacity (OXPHOS) and the mitochondrial fatty acid oxidation capacity by measuring the respiratory rates. Finally, Stattic, the STAT-3 inhibitor and wortmannin were administered in both EMPA and DAPA groups to establish causal relationships in the mechanism of protection. EMPA, DAPA and ERTU at the SED led to similar SGLT-2 inhibition as inferred by the significant increase in glucose excretion. EMPA and DAPA but not ERTU reduced IS. EMPA preserved mitochondrial functionality in complex I&II linked oxidative phosphorylation. EMPA and DAPA treatment led to NF-kB, RISK, STAT-3 activation and the downstream apoptosis reduction coinciding with IS reduction. Stattic and wortmannin attenuated the cardioprotection afforded by EMPA and DAPA. Among several upstream mediators, fibroblast growth factor-2 (FGF-2) and caveolin-3 were increased by EMPA and DAPA treatment. ERTU reduced IS only when given at the double dose of the SED (20 mg/kg/day). Short-term EMPA and DAPA, but not ERTU administration at the SED reduce IS in healthy non-diabetic mice. Cardioprotection is not correlated to SGLT-2 inhibition, is STAT-3 and PI3K dependent and associated with increased FGF-2 and Cav-3 expression.


Assuntos
Diabetes Mellitus Tipo 2 , Traumatismo por Reperfusão Miocárdica , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos , Glucose , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Wortmanina
6.
Integr Cancer Ther ; 18: 1534735419872811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31441361

RESUMO

Background. Cisplatin (cis-diamminedichloroplatinum) is a widely used chemotherapeutic agent for the treatment of various cancers. Although it represents an effective regimen, its application is accompanied by side effects to normal tissues, especially to the kidneys. Cisplatin generates free radicals and impairs the function of antioxidant enzymes. Modulation of cisplatin-induced oxidative stress by specific antioxidant molecules represents an attractive approach to minimize side effects. Methods. We studied the ability of curcumin to sensitize leiomyosarcoma (LMS) cells to cisplatin. Assays for cell proliferation, mitochondrial function, induction of apoptosis, and cell cycle arrest were performed using various concentrations of cisplatin and a concentration of curcumin that caused a nonsignificant reduction in cell viability. Moreover, the effect of curcumin was examined against cisplatin-induced experimental nephrotoxicity. Renal injury was assessed by measuring serum creatinine, blood urea nitrogen (BUN), and the kidney's relative weight. Oxidative stress was measured by means of enzymatic activities of superoxide dismutase and glutathione peroxidase in the rats' blood and malondialdehyde levels in rats' urine. Results. In our study, we found that curcumin sensitizes LMS cells to cisplatin by enhancing apoptosis and impairing mitochondrial function. In an in vivo model of cisplatin-induced experimental nephrotoxicity, intraperitoneal administration of curcumin failed to preserve blood's antioxidant enzyme activity and decrease lipid peroxidation. Nevertheless, curcumin was able to protect nephrons' histology from cisplatin's toxic effect. Conclusion. Our results showed that curcumin can act as chemosensitizer, but its role as an adjunctive cisplatin-induced oxidative stress inhibitor requires further dose-finding studies to maximize the effectiveness of chemotherapy.


Assuntos
Antioxidantes/metabolismo , Cisplatino/farmacologia , Curcumina/farmacologia , Nefropatias/tratamento farmacológico , Leiomiossarcoma/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Leiomiossarcoma/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
7.
Mol Cell Biochem ; 455(1-2): 41-59, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30390173

RESUMO

The aim of this study was to examine the potential association between the expression of Hsp70 protein and heart failure and to investigate the possible protective effect of Hsp70 against the doxorubicin-induced toxicity. Initially, at clinical level, the expression levels of the inducible Hsp70 were quantified in serum from patients with heart failure. Our results showed that in heart failure, Hsp70 concentration appeared to be increased in blood sera of patients compared to that of healthy individuals. The enhanced expression of Hsp70 in serum of patients with heart failure seemed to be associated with various features, such as gender, age and the type of heart failure, but not with its etiology. Next, in our study at cellular level, we used primary cell cultures isolated from embryos of Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70 and wild-type mice (F1/F1). After exposure to a wide range of doxorubicin concentrations and incubation times, the dose- and time-dependent toxicity of the drug, which appeared to be reduced in Tg/Tg cells, was demonstrated. In addition, doxorubicin administration appeared to result in a dose- and time-dependent decrease in the activity of two of the major endogenous antioxidant enzymes (SOD and GPx). The increased activity of these enzymes in Tg/Tg cells compared to the control F1/F1 cells was obvious, suggesting that the presence of Hsp70 confers enhanced tolerance against DOX-induced oxidative stress. Overall, it has been indicated that Hsp70 protein exerts a very important protective action and renders cells more resistant to the harmful effects of doxorubicin.


Assuntos
Cardiotoxinas/efeitos adversos , Doxorrubicina/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/sangue , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/induzido quimicamente , Animais , Cardiotoxinas/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Proteínas de Choque Térmico HSP70/genética , Insuficiência Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
8.
Int J Oncol ; 54(3): 821-832, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569142

RESUMO

Heat shock protein 70 (Hsp70; also known as HSP70A1A) is one of the most induced proteins in cancer cells; however, its role in cancer has not yet been fully elucidated. In the present study, we proposed a hypothetical model in which the silencing of Hsp70 enhanced the metastatic properties of the HeLa, A549 and MCF7 cancer cell lines. We consider that the inability of cells to form cadherin­catenin complexes in the absence of Hsp70 stimulates their detachment from neighboring cells, which is the first step of anoikis and metastasis. Under these conditions, an epithelial­to­mesenchymal transition (EMT) pathway is activated that causes cancer cells to acquire a mesenchymal phenotype, which is known to possess a higher ability for migration. Therefore, we herein provide evidence of the dual role of Hsp70 which, according to international literature, first establishes a cancerous environment and then, as suggested by our team, regulates the steps of the metastatic process, including EMT and migration. Finally, the trigger for the anti­metastatic properties that are acquired by cancer cells in the absence of Hsp70 appears to be the destruction of the Hsp70­dependent heterocomplexes of E­cadherin/catenins, which function like an anchor between neighboring cells.


Assuntos
Regulação para Baixo , Transição Epitelial-Mesenquimal , Proteínas de Choque Térmico HSP70/genética , Neoplasias/patologia , Anoikis , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Inativação Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/genética , beta Catenina/metabolismo
9.
Cell Stress Chaperones ; 19(6): 853-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24748476

RESUMO

The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism.


Assuntos
Doxorrubicina , Proteínas de Choque Térmico HSP70/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Transdução de Sinais , Sístole , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA